
Developing with VMware vCenter
Orchestrator

vCenter Orchestrator 5.5.1

This document supports the version of each product listed and
supports all subsequent versions until the document is
replaced by a new edition. To check for more recent editions
of this document, see http://www.vmware.com/support/pubs.

EN-001341-01

http://www.vmware.com/support/pubs

Developing with VMware vCenter Orchestrator

2 VMware, Inc.

You can find the most up-to-date technical documentation on the VMware Web site at:

http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

Copyright © 2008–2014 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

http://www.vmware.com/support/
mailto:docfeedback@vmware.com
http://pubs.vmware.com/copyright-trademark.html

Contents

Developing with VMware vCenter Orchestrator 7

Updated Information 9

1 Developing Workflows 11

Key Concepts of Workflows 13
Workflow Parameters 13
Workflow Attributes 13
Workflow Schema 14
Workflow Presentation 14
Workflow Tokens 14

Phases in the Workflow Development Process 14
Access Rights for the Orchestrator Client 14
Testing Workflows During Development 15
Creating and Editing a Workflow 15

Create a Workflow 15
Edit a Workflow 16
Edit a Workflow from the Standard Library 16
Workflow Editor Tabs 17

Provide General Workflow Information 18
Defining Attributes and Parameters 18

Define Workflow Parameters 19
Define Workflow Attributes 19
Attribute and Parameter Naming Restrictions 20

Workflow Schema 21
View Workflow Schema 22
Building a Workflow in the Workflow Schema 22
Schema Elements 25
Schema Element Properties 28
Links and Bindings 31
Decisions 36
Exception Handling 39
Foreach Elements and Composite Types 40

Obtaining Input Parameters from Users When a Workflow Starts 43
Creating the Input Parameters Dialog Box In the Presentation Tab 43
Setting Parameter Properties 45

Requesting User Interactions While a Workflow Runs 48
Add a User Interaction to a Workflow 49
Set the User Interaction security.group Attribute 49
Set the timeout.date Attribute to an Absolute Date 50
Calculate a Relative Timeout for User Interactions 51
Set the timeout.date Attribute to a Relative Date 52

VMware, Inc. 3

Define the External Inputs for a User Interaction 53
Define User Interaction Exception Behavior 54
Create the Input Parameters Dialog Box for the User Interaction 55
Respond to a Request for a User Interaction 56

Calling Workflows Within Workflows 56
Workflow Elements that Call Workflows 57
Call a Workflow Synchronously 59
Call a Workflow Asynchronously 60
Schedule a Workflow 61
Prerequisites for Calling a Remote Workflow from Within Another Workflow 61
Call Several Workflows Simultaneously 62

Running a Workflow on a Selection of Objects 63
Implement the Start Workflows in a Series and Start Workflows in Parallel Workflows 64

Developing Long-Running Workflows 65
Set a Relative Time and Date for Timer-Based Workflows 65
Create a Timer-Based Long-Running Workflow 66
Create a Trigger Object 68
Create a Trigger-Based Long-Running Workflow 69

Configuration Elements 70
Create a Configuration Element 70

Workflow User Permissions 71
Set User Permissions on a Workflow 72

Validating Workflows 72
Validate a Workflow and Fix Validation Errors 73

Debugging Workflows 74
Debug a Workflow 74
Example Workflow Debugging 75

Running Workflows 75
Run a Workflow in the Workflow Editor 76
Run a Workflow 76

Resuming a Failed Workflow Run 78
Set the Behavior for Resuming a Failed Workflow Run 78
Set Custom Properties for Resuming Failed Workflow Runs 79
Resume a Failed Workflow Run 79

Generate Workflow Documentation 80
Use Workflow Version History 80
Restore Deleted Workflows 81
Develop a Simple Example Workflow 81

Create the Simple Workflow Example 83
Create the Schema of the Simple Workflow Example 84
Create the Simple Workflow Example Zones 86
Define the Parameters of the Simple Workflow Example 87
Define the Simple Workflow Example Decision Bindings 88
Bind the Action Elements of the Simple Workflow Example 89
Bind the Simple Workflow Example Scripted Task Elements 92
Define the Simple Workflow Example Exception Bindings 99
Set the Read-Write Properties for Attributes of the Simple Workflow Example 100
Set the Simple Workflow Example Parameter Properties 100
Set the Layout of the Simple Workflow Example Input Parameters Dialog Box 102

Developing with VMware vCenter Orchestrator

4 VMware, Inc.

Validate and Run the Simple Workflow Example 103
Develop a Complex Workflow 104

Create the Complex Workflow Example 105
Create a Custom Action for the Complex Workflow Example 106
Create the Schema of the Complex Workflow Example 107
Create the Complex Workflow Example Zones 109
Define the Parameters of the Complex Workflow Example 111
Define the Bindings for the Complex Workflow Example 111
Set the Complex Workflow Example Attribute Properties 121
Create the Layout of the Complex Workflow Example Input Parameters 121
Validate and Run the Complex Workflow Example 122

2 Scripting 125

Orchestrator Elements that Require Scripting 125
Limitations of the Mozilla Rhino Implementation in Orchestrator 126
Using the Orchestrator Scripting API 126

Access the Scripting Engine from the Workflow Editor 127
Access the Scripting Engine from the Action or Policy Editor 128
Access the Orchestrator API Explorer 128
Use the Orchestrator API Explorer to Find Objects 128
Writing Scripts 129
Add Parameters to Scripts 131
Accessing the Orchestrator Server File System from JavaScript and Workflows 131
Accessing Java Classes from JavaScript 132
Accessing Operating System Commands from JavaScript 132

Exception Handling Guidelines 132
Orchestrator JavaScript Examples 133

Basic Scripting Examples 134
Email Scripting Examples 135
File System Scripting Examples 137
LDAP Scripting Examples 137
Logging Scripting Examples 138
Networking Scripting Examples 138
Workflow Scripting Examples 138

3 Developing Actions 141

Reusing Actions 141
Access the Actions View 141
Components of the Actions View 142
Creating Actions 142

Create an Action 142
Find Elements That Implement an Action 143
Action Coding Guidelines 144

Use Action Version History 145
Restore Deleted Actions 145

4 Creating Resource Elements 147

View a Resource Element 147

Contents

VMware, Inc. 5

Import an External Object to Use as a Resource Element 148
Edit the Resource Element Information and Access Rights 148
Save a Resource Element to a File 149
Update a Resource Element 149
Add a Resource Element to a Workflow 150
Add a Resource Element to a Web View 151

5 Creating Packages 153

Create a Package 154
Set User Permissions on a Package 155

6 Creating Plug-Ins by Using Maven 157

Create an Orchestrator Plug-In with Maven from an Archetype 157
Maven Archetypes 158
Plug-In Development Best Practices 158

Index 161

Developing with VMware vCenter Orchestrator

6 VMware, Inc.

Developing with VMware vCenter Orchestrator

Developing with VMware vCenter Orchestrator provides information and instructions for developing custom
VMware® vCenter Orchestrator workflows and actions.

In addition, the documentation contains information about the Orchestrator elements that require scripting
and provides JavaScript examples. Developing with VMware vCenter Orchestrator also provides instructions
about how to create resources and packages.

Intended Audience
This information is intended for developers who want to create custom Orchestrator workflows and actions,
as well as custom building blocks.

VMware, Inc. 7

Developing with VMware vCenter Orchestrator

8 VMware, Inc.

Updated Information

Developing with VMware vCenter Orchestrator is updated with each release of the product or when necessary.

This table provides the update history of Developing with VMware vCenter Orchestrator.

Revision Description

EN-001341-01 Added “Maven Archetypes,” on page 158 and “Plug-In Development Best Practices,” on page 158.

EN-001341-00 Initial release.

VMware, Inc. 9

Developing with VMware vCenter Orchestrator

10 VMware, Inc.

Developing Workflows 1
You develop workflows in the Orchestrator client interface. Workflow development involves using the
workflow editor, the built-in Mozilla Rhino JavaScript scripting engine, and the Orchestrator and vCenter
Server APIs.

n Key Concepts of Workflows on page 13
Workflows consist of a schema, attributes, and parameters. The workflow schema is the main
component of a workflow as it defines all the workflow elements and the logical connections between
them. The workflow attributes and parameters are the variables that workflows use to transfer data.
Orchestrator saves a workflow token every time a workflow runs, recording the details of that specific
run of the workflow.

n Phases in the Workflow Development Process on page 14
The process for developing a workflow involves a series of phases. You can follow a different
sequence of phases or skip a phase, depending on the type of workflow that you are developing. For
example, you can create a workflow without custom scripting.

n Access Rights for the Orchestrator Client on page 14
By default, only members of the Orchestrator administrator LDAP group can access the Orchestrator
client.

n Testing Workflows During Development on page 15
You can test workflows at any point during the development process, even if you have not completed
the workflow or included an end element.

n Creating and Editing a Workflow on page 15
You create workflows in the Orchestrator client and edit them in the workflow editor. The workflow
editor is the IDE of the Orchestrator client for developing workflows.

n Provide General Workflow Information on page 18
You provide a workflow name and desription, define attributes and certain aspects of workflow
behavior, set the version number, check the signature, and set user permissions in the General tab in
the workflow editor.

n Defining Attributes and Parameters on page 18
After you create a workflow, you must define the global attributes, input parameters, and output
parameters of the workflow.

n Workflow Schema on page 21
A workflow schema is a graphical representation of a workflow that shows the workflow as a flow
diagram of interconnected workflow elements. The workflow schema defines the logical flow of a
workflow.

VMware, Inc. 11

n Obtaining Input Parameters from Users When a Workflow Starts on page 43
If a workflow requires input parameters, it opens a dialog box in which users enter the required input
parameter values when it runs. You can organize the content and layout, or presentation, of this dialog
box in Presentation tab in the workflow editor.

n (Optional) Requesting User Interactions While a Workflow Runs on page 48
A workflow can sometimes require additional input parameters from an outside source while it runs.
These input parameters can come from another application or workflow, or the user can provide them
directly.

n Calling Workflows Within Workflows on page 56
Workflows can call on other workflows during their run. A workflow can start another workflow
either because it requires the result of the other workflow as an input parameter for its own run, or it
can start a workflow and let it continue its own run independently. Workflows can also start a
workflow at a given time in the future, or start multiple workflows simultaneously.

n Running a Workflow on a Selection of Objects on page 63
You can automate repetitive tasks by running a workflow on a selection of objects. For example, you
can create a workflow that takes a snapshot of all the virtual machines in a virtual machine folder, or
you can create a workflow that powers off all the virtual machines on a given host.

n Developing Long-Running Workflows on page 65
A workflow in a waiting state consumes system resources because it constantly polls the object from
which it requires a response. If you know that a workflow will potentially wait for a long time before
it receives the response it requires, you can add long-running workflow elements to the workflow.

n Configuration Elements on page 70
A configuration element is a list of attributes you can use to configure constants across a whole
Orchestrator server deployment.

n Workflow User Permissions on page 71
Orchestrator defines levels of permissions that you can apply to groups to allow or deny them access
to workflows.

n Validating Workflows on page 72
Orchestrator provides a workflow validation tool. Validating a workflow helps identify errors in the
workflow and checks that the data flows from one element to the next correctly.

n Debugging Workflows on page 74
Orchestrator provides a workflow debugging tool. You can debug a workflow to inspect the input and
output parameters and attributes at the start of any activity, replace parameter or attribute values
during a workflow run in edit mode, and resume a workflow from the last failed activity.

n Running Workflows on page 75
An Orchestrator workflow runs according to a logical flow of events.

n Resuming a Failed Workflow Run on page 78
If a workflow fails, Orchestrator provides an option to resume the workflow run from the last failed
activity.

n Generate Workflow Documentation on page 80
You can export documentation in PDF format about a workflow or a workflow folder that you select
at any time.

n Use Workflow Version History on page 80
You can use version history to revert a workflow to a previously saved state. You can revert the
workflow state to an earlier or a later workflow version. You can also compare the differences between
the current state of the workflow and a saved version of the workflow.

Developing with VMware vCenter Orchestrator

12 VMware, Inc.

n Restore Deleted Workflows on page 81
You can restore workflows that have been deleted from the workflow library.

n Develop a Simple Example Workflow on page 81
Developing a simple example workflow demonstrates the most common steps in the workflow
development process.

n Develop a Complex Workflow on page 104
Developing a complex example workflow demonstrates the most common steps in the workflow
development process and more advanced scenarios, such as creating custom decisions and loops.

Key Concepts of Workflows
Workflows consist of a schema, attributes, and parameters. The workflow schema is the main component of
a workflow as it defines all the workflow elements and the logical connections between them. The workflow
attributes and parameters are the variables that workflows use to transfer data. Orchestrator saves a
workflow token every time a workflow runs, recording the details of that specific run of the workflow.

Workflow Parameters
Workflows receive input parameters and generate output parameters when they run.

Input Parameters
Most workflows require a certain set of input parameters to run. An input parameter is an argument that the
workflow processes when it starts. The user, an application, another workflow, or an action passes input
parameters to a workflow for the workflow to process when it starts.

For example, if a workflow resets a virtual machine, the workflow requires as an input parameter the name
of the virtual machine.

Output Parameters
A workflow's output parameters represent the result from the workflow run. Output parameters can change
when a workflow or a workflow element runs. While workflows run, they can receive the output
parameters of other workflows as input parameters.

For example, if a workflow creates a snapshot of a virtual machine, the output parameter for the workflow
is the resulting snapshot.

Workflow Attributes
Workflow elements process data that they receive as input parameters, and set the resulting data as
workflow attributes or output parameters.

Read-only workflow attributes act as global constants for a workflow. Writable attributes act as a
workflow’s global variables.

You can use attributes to transfer data between the elements of a workflow. You can obtain attributes in the
following ways:

n Define attributes when you create a workflow

n Set the output parameter of a workflow element as a workflow attribute

n Inherit attributes from a configuration element

Chapter 1 Developing Workflows

VMware, Inc. 13

Workflow Schema
A workflow schema is a graphical representation that shows the workflow as a flow diagram of
interconnected workflow elements. The workflow schema is the most important element of a workflow as it
determines its logic.

Workflow Presentation
When users run a workflow, they provide the values for the input parameters of the workflow in the
workflow presentation. When you organize the workflow presentation, consider the type and number of
input parameters of the workflow.

Workflow Tokens
A workflow token represents a workflow that is running or has run.

A workflow is an abstract description of a process that defines a generic sequence of steps and a generic set
of required input parameters. When you run a workflow with a set of real input parameters, you receive an
instance of this abstract workflow that behaves according to the specific input parameters you give it. This
specific instance of a completed or a running workflow is called a workflow token.

Workflow Token Attributes
Workflow token attributes are the specific parameters with which a workflow token runs. The workflow
token attributes are an aggregation of the workflow's global attributes and the specific input and output
parameters with which you run the workflow token.

Phases in the Workflow Development Process
The process for developing a workflow involves a series of phases. You can follow a different sequence of
phases or skip a phase, depending on the type of workflow that you are developing. For example, you can
create a workflow without custom scripting.

Generally, you develop a workflow through the following phases.

1 Create a new workflow or create a duplicate of an existing workflow from the standard library.

2 Provide general information about the workflow.

3 Define the input parameters of the workflow.

4 Lay out and link the workflow schema to define the logical flow of the workflow.

5 Bind the input and output parameters of each schema element to workflow attributes.

6 Write the necessary scripts for scriptable task elements or custom decision elements.

7 Create the workflow presentation to define the layout of the input parameters dialog box that the users
see when they run the workflow.

8 Validate the workflow.

Access Rights for the Orchestrator Client
By default, only members of the Orchestrator administrator LDAP group can access the Orchestrator client.

The Orchestrator administrator can grant access to the Orchestrator client to other user groups by setting at
least the View permission.

Developing with VMware vCenter Orchestrator

14 VMware, Inc.

To allow you to access the Orchestrator client, the administrator must either add you to the Orchestrator
administrator LDAP group, or set View, Inspect, Edit, Execute, or Admin permissions to a group that you
are a member of.

Testing Workflows During Development
You can test workflows at any point during the development process, even if you have not completed the
workflow or included an end element.

By default, Orchestrator checks that a workflow is valid before you can run it. You can deactivate automatic
validation during workflow development, to run partial workflows for testing purposes.

NOTE Do not forget to reactivate automatic validation when you finish developing the workflow.

Procedure

1 In the Orchestrator client menu, click Tools > User preferences.

2 Click the Workflows tab.

3 Deselect the Validate workflow before running it check box.

You deactivated automatic workflow validation.

Creating and Editing a Workflow
You create workflows in the Orchestrator client and edit them in the workflow editor. The workflow editor
is the IDE of the Orchestrator client for developing workflows.

You open the workflow editor by editing an existing workflow.

n Create a Workflow on page 15
You can create workflows in the workflows hierarchical list of the Orchestrator client.

n Edit a Workflow on page 16
You edit a workflow to make changes to an existing workflow or to develop a new empty workflow.

n Edit a Workflow from the Standard Library on page 16
Orchestrator provides a standard library of workflows that you can use to automate operations in the
virtual infrastructure. The workflows in the standard library are locked in the read-only state.

n Workflow Editor Tabs on page 17
The workflow editor consists of tabs on which you edit the components of the workflows.

Create a Workflow
You can create workflows in the workflows hierarchical list of the Orchestrator client.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 (Optional) Right-click the root of the workflows hierarchical list, or a folder in the list, and select Add
folder to create a new workflow folder.

4 (Optional) Type the name of the new folder.

5 Right-click the new folder or an existing folder and select New workflow.

6 Name the new workflow and click OK.

Chapter 1 Developing Workflows

VMware, Inc. 15

A new empty workflow is created in the folder that you chose.

What to do next

You can edit the workflow.

Edit a Workflow
You edit a workflow to make changes to an existing workflow or to develop a new empty workflow.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 Expand the workflows hierarchical list to navigate to the workflow that you want to edit.

4 To open the workflow for editing, right-click the workflow and select Edit.

The workflow editor opens the workflow for editing.

Edit a Workflow from the Standard Library
Orchestrator provides a standard library of workflows that you can use to automate operations in the
virtual infrastructure. The workflows in the standard library are locked in the read-only state.

To edit a workflow from the standard library, you must create a duplicate of that workflow. You can edit
duplicate workflows or custom workflows.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 (Optional) Right-click the root of the hierarchical list of workflow folders and select New folder to
create a folder to contain the workflow to edit.

4 Expand the Library hierarchical list of standard workflows to navigate to the workflow to edit.

5 Right-click the workflow to edit.

The Edit option is dimmed. The workflow is read-only.

6 Right-click the workflow and select Duplicate workflow.

7 Provide a name for the duplicate workflow.

By default, Orchestrator names the duplicate workflow Copy of workflow_name.

8 Click the Workflow folder value to search for a folder in which to save the duplicate workflow.

Select the folder you created in Step 3. If you did not create a folder, select a folder that is not in the
library of standard workflows.

9 Click Yes or No to copy the workflow version history to the duplicate.

Option Description

Yes The version history of the original workflow is replicated in the duplicate.

No The version of the duplicate reverts to 0.0.0.

10 Click Duplicate to duplicate the workflow.

Developing with VMware vCenter Orchestrator

16 VMware, Inc.

11 Right-click the duplicate workflow and select Edit.

The workflow editor opens. You can edit the duplicate workflow.

You duplicated a workflow from the standard library. You can edit the duplicate workflow.

Workflow Editor Tabs
The workflow editor consists of tabs on which you edit the components of the workflows.

Table 1‑1. Workflow Editor Tabs

Tab Description

General Edit the workflow name, provide a description of what the
workflow does, set the version number, see the user
permissions, define the behavior of the workflow if the
Orchestrator server restarts, and define the workflow's
global attributes.

Inputs Define the parameters that the workflow requires when it
runs. These input parameters are the data that the
workflow processes. The workflow's behavior changes
according to these parameters.

Outputs Define the values that the workflow generates when it
completes its run. Other workflows or actions can use these
values when they run.

Schema Build the workflow. You build the workflow by dragging
workflow schema elements from the workflow palette on
the left side of the Schema tab. Clicking an element in the
schema diagram allows you to define and edit the
element's behavior in the bottom half of the Schema tab.

Presentation Define the layout of the user input dialog box that appears
when users run a workflow. You arrange the parameters
and attributes into presentation steps and groups to ease
identification of parameters in the input parameters dialog
box. You define the constraints on the input parameters
that users can provide in the presentation by setting the
parameter properties.

Parameters References View which workflow elements consume the attributes and
parameters in the logical flow of the workflow. This tab
also shows the constraints on these parameters and
attributes that you define in the Presentation tab.

Workflow Tokens View details about each workflow run. This information
includes the workflow's status, the user who ran it, the
business status of the current element, and the time and
date when the workflow started and ended.

Events View information about each individual event that occurs
when the workflow runs. This information includes a
description of the event, the user who triggered it, the type
and origin of the event, and the time and date when it
occurred.

Permissions Set the permissions to interact with the workflow for users
or groups of users.

Chapter 1 Developing Workflows

VMware, Inc. 17

Provide General Workflow Information
You provide a workflow name and desription, define attributes and certain aspects of workflow behavior,
set the version number, check the signature, and set user permissions in the General tab in the workflow
editor.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 Click the General tab in the workflow editor.

2 Click the Version digits to set a version number for the workflow.

The Version Comment dialog box opens.

3 Type a comment for this version of the workflow and click OK.

For example, type Initial creation if you just created the workflow.

A new version of the workflow is created. You can later revert the state of the workflow to this version.

4 Define how the workflow behaves if the Orchestrator server restarts by setting the Server restart
behavior value.

n Leave the default value of Resume workflow run to make the workflow resume at the point at
which its run was interrupted when the server stopped.

n Click Resume workflow run and select Do not resume workflow run (set as FAILED) to prevent
the workflow from restarting if the Orchestrator server restarts.

Prevent the workflow from restarting if the workflow depends on the environment in which it runs. For
example, if a workflow requires a specific vCenter Server and you reconfigure Orchestrator to connect
to a different vCenter Server, restarting the workflow after you restart the Orchestrator server causes
the workflow to fail.

5 Type a detailed description of the workflow in the Description text box.

6 Click Save at the bottom of the workflow editor.

A green message at the bottom left of the workflow editor confirms that you saved your changes.

You defined aspects of the workflow behavior, set the version, and defined the operations that users can
perform on the workflow.

What to do next

You must define the workflow attributes and parameters.

Defining Attributes and Parameters
After you create a workflow, you must define the global attributes, input parameters, and output
parameters of the workflow.

Workflow attributes store data that workflows process internally. Workflow input parameters are data
provided by an outside source, such as a user or another workflow. Workflow output parameters are data
that the workflow delivers when it finishes its run.

n Define Workflow Parameters on page 19
You can use input and output parameters to pass data into and out of the workflow.

Developing with VMware vCenter Orchestrator

18 VMware, Inc.

n Define Workflow Attributes on page 19
Workflow attributes are the data that workflows process.

n Attribute and Parameter Naming Restrictions on page 20
You can use OGNL expressions to determine input parameters dynamically when a workflow runs.
The Orchestrator OGNL parser uses certain keywords during OGNL processing that you cannot use
in workflow attribute or parameter names.

Define Workflow Parameters
You can use input and output parameters to pass data into and out of the workflow.

You can define the parameters of a workflow in the workflow editor. The input parameters are the initial
data that the workflow requires to run. Users provide the values for the input parameters when they run the
workflow. The output parameters are the data the workflow returns when it completes its run.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 Click the appropriate tab in the workflow editor.

n Click Inputs to create input parameters.

n Click Outputs to create output parameters.

2 Right-click inside the parameters tab and select Add parameter.

3 Click the parameter name to change it.

The default name is arg_in_X for input parameters and arg_out_X for output parameters, where X is a
number.

4 (Optional) To change the value of the parameter type, click the value and select one from the list of
available values.

The value for the parameter type is String by default.

5 Add a description for the parameter in the Description text box.

6 (Optional) If you decide that the parameter should be an attribute rather than a parameter, right-click
the parameter and select Move as attribute to change the parameter into an attribute.

You have defined an input or output parameter for the workflow.

What to do next

After you define the workflow's parameters, build the workflow schema.

Define Workflow Attributes
Workflow attributes are the data that workflows process.

NOTE You can also define workflow attributes in the workflow schema elements when you create the
workflow schema. It is often easier to define an attribute when you create the workflow schema element that
processes it.

Prerequisites

Open a workflow for editing in the workflow editor.

Chapter 1 Developing Workflows

VMware, Inc. 19

Procedure

1 Click the General tab in the workflow editor.

The attributes pane appears in the bottom half of the General tab.

2 Right-click in the attributes pane and select Add Attribute.

A new attribute appears in the attributes list, with String as its default type.

3 Click the attribute name to change it.

The default name is attX, where X is a number.

NOTE Workflow attributes must not have the same name as any of the workflow's parameters.

4 Click the attribute type to select a new type from a list of possible values.

The default attribute type is String.

5 Click the attribute value to set or select a value according to the attribute type.

6 Add a description of the attribute in the Description text box.

7 If the attribute is a constant rather than a variable, click the check box to the left of the attribute name to
make its value read-only.

The lock icon identifies the column of read-only check boxes.

8 (Optional) If you decide that the attribute should be an input or output parameter rather than an
attribute, right-click the attribute and select Move as INPUT/OUTPUT parameter to change the
attribute into a parameter.

You defined an attribute for the workflow.

What to do next

You can define the workflow's input and output parameters.

Attribute and Parameter Naming Restrictions
You can use OGNL expressions to determine input parameters dynamically when a workflow runs. The
Orchestrator OGNL parser uses certain keywords during OGNL processing that you cannot use in
workflow attribute or parameter names.

Using a reserved OGNL keyword as a prefix to an attribute name does not break OGNL processing. For
example, you can name a parameter trueParameter. Reserved keywords are not case-sensitive.

IMPORTANT The use of OGNL expressions in workflow presentations is deprecated as of Orchestrator 4.1.
Using OGNL expressions in workflow presentations is not supported in releases of Orchestrator later than
4.1.

You cannot use the following keywords in workflow attribute and parameter names.

Developing with VMware vCenter Orchestrator

20 VMware, Inc.

Table 1‑2. Forbidden Keywords in Attribute and Parameter Names

Forbidden Keyword Forbidden Keyword Forbidden Keyword

n abstract

n back_char_esc

n back_char_literal

n boolean

n byte

n char

n char_literal

n class

n _classResolver

n const

n context

n debugger

n dec_digits

n dec_flt

n default

n delete

n digit

n double

n dynamic_subscript

n enum

n eof

n esc

n exponent

n export

n extends

n false

n final

n flt_literal

n flt_suff

n ident

n implements

n import

n in

n int

n int_literal

n interface

n _keepLastEvaluation

n _lastEvaluation

n letter

n long

n _memberAccess

n native

n package

n private

n public

n root

n short

n static

n string_esc

n string_literal

n synchronized

n this

n _traceEvaluations

n true

n _typeConverter

n volatil

n with

n WithinBackCharLiteral

n WithinCharLiteral

n WithinStringLiteral

Workflow Schema
A workflow schema is a graphical representation of a workflow that shows the workflow as a flow diagram
of interconnected workflow elements. The workflow schema defines the logical flow of a workflow.

n View Workflow Schema on page 22
You view the schema of a workflow in the Schema tab for that workflow in the Orchestrator client.

n Building a Workflow in the Workflow Schema on page 22
Workflow schemas consist of a sequence of schema elements. Workflow schema elements are the
building blocks of the workflow, and can represent decisions, scripted tasks, actions, exception
handlers, or even other workflows.

n Schema Elements on page 25
The workflow editor presents the workflow schema elements in menus in the Schema tab.

n Schema Element Properties on page 28
Schema elements have properties that you can define and edit in the Schema tab of the workflow
palette.

n Links and Bindings on page 31
Links between elements determine the logical flow of the workflow. Bindings populate elements with
data from other elements by binding input and output parameters to workflow attributes.

n Decisions on page 36
Workflows can implement decision functions that define different courses of action according to a
Boolean true or false statement.

n Exception Handling on page 39
Exception handling catches any errors that occur when a schema element runs. Exception handling
defines how the schema element behaves when the error occurs.

Chapter 1 Developing Workflows

VMware, Inc. 21

n Foreach Elements and Composite Types on page 40
You can insert a Foreach element in the workflow that you develop to run a subworkflow that iterates
over arrays of parameters or attributes. To improve the understanding and readability of the
workflow, you can group several workflow parameters of different types that are logically connected
in a single type that is called a composite type.

View Workflow Schema
You view the schema of a workflow in the Schema tab for that workflow in the Orchestrator client.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Navigate to a workflow in the workflow hierarchical list.

3 Click the workflow.

Information about that workflow appears in the right pane.

4 Select the Schema tab in the right pane.

You see the graphical representation of the workflow.

Building a Workflow in the Workflow Schema
Workflow schemas consist of a sequence of schema elements. Workflow schema elements are the building
blocks of the workflow, and can represent decisions, scripted tasks, actions, exception handlers, or even
other workflows.

You build workflows in the workflow editor by dragging schema elements from the workflow palette on the
left of the workflow editor into the workflow schema diagram.

Edit a Workflow Schema
You build a workflow by creating a sequence of schema elements that define the logical flow of the
workflow.

By default, all elements in the workflow schema are linked. Links between the elements are represented as
arrows. When you add a new element to the workflow schema, you must drag it onto an arrow or an
existing workflow element that is not linked to a next element. After you add workflow elements to the
schema, you can delete existing links and create new links to define the logical flow of the workflow.

You can copy an element or a selection of elements from the schema of an existing workflow to the schema
of the workflow that you are editing. See “Copy Workflow Schema Elements,” on page 23.

A workflow schema must have at least one End workflow element, but it can have several.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 Click the Schema tab in the workflow editor.

2 Drag a schema element from the Generic menu in the left pane, to the workflow schema.

3 Double-click the element you dragged to the workflow schema, type an appropriate name, and press
Enter.

You must provide elements with unique names in the context of the workflow.

You cannot rename Waiting timer, Waiting event, End workflow, or Throw exception elements.

Developing with VMware vCenter Orchestrator

22 VMware, Inc.

4 (Optional) Right-click an element in the schema and select Copy.

5 (Optional) Right-click at an appropriate position in the schema and select Paste.

Copying and pasting existing schema elements is a quick way of adding similar elements to the schema.
All of the settings of the copied element appear in the pasted element, except for the business state.
Adjust the pasted element settings accordingly.

6 Drag schema elements from the Basic, Log, or Network menus to the workflow schema.

You can edit the names of the elements in the Basic, Log, or Network menus. You cannot edit their
scripting.

7 Drag schema elements from the Generic menu to the workflow schema.

When you drag actions or workflows to the workflow schema, a dialog box in which you can search for
the action or workflow to insert appears.

8 In the Filter text box, type the name or part of the name of the workflow or action to insert in the
workflow.

The workflows or actions that match the search appear in the dialog box.

9 Double-click a workflow or action to select it.

You inserted the workflow or action in the workflow schema.

10 Repeat this procedure until you have added all of the required schema elements to the workflow
schema.

What to do next

Define the properties of the elements you added to the workflow schema and link and bind them all
together.

Copy Workflow Schema Elements
You can copy an element or a selection of elements from the schema of an existing workflow to the schema
of the workflow that you are editing.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 Click the Schema tab in the workflow editor.

2 From the left pane, select the workflow from which you want to copy schema elements.

n Click All Workflows and select the workflow from the hierarchical list of workflows.

n Type the name of the workflow in the search text box and press Enter.

3 Right-click the selected workflow and select Open.

A window displaying the workflow's properties appears.

4 In the workflow's window, click the Schema tab.

5 Select one or more workflow schema elements, right-click the selection, and select Copy.

6 In the Schema tab of the workflow that you are editing, right-click and select Paste.

You copied workflow schema elements from one workflow to another.

Chapter 1 Developing Workflows

VMware, Inc. 23

What to do next

You must link and bind the copied schema elements to the existing workflow schema.

Promote Input and Output Parameters
You can promote the input and output parameters of a child element to the parent workflow.

You can promote a custom attribute that you have defined on the General tab of the workflow editor. You
can promote predefined attributes only by replacing an input parameter with an attribute of matching type.

NOTE If you promote a predefined attribute and assign a custom value to it, a duplicate attribute is created
to avoid overwriting the value of the original attribute. The duplicate attribute retains the name of the
original attribute and increments the numerical value at the end of the attribute's name.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 Click the Schema tab in the workflow editor.

2 Add a workflow or an action element to the workflow schema.

The following notification appears at the top of the schema pane.

Do you want to add the activity's parameters as input/output to the current workflow?

3 On the notification, click Setup.

A pop-up window with the available options appears.

4 Select the mapping type for each input parameter.

Option Description

Input The argument is mapped to an input workflow parameter.

Skip The argument is mapped to a NULL value.

Value The argument is mapped to an attribute with a value that you can set from
the Value column.

5 Select the mapping type for each output parameter.

Option Description

Output The argument is mapped to an output workflow parameter.

Skip The argument is mapped to a NULL value.

Local variable The argument is mapped to an attribute.

6 Click Promote.

You promoted parameters to the parent workflow.

Modify Search Results
You use the Search text box to find elements such as workflows or actions. If a search returns a partial
result, you can modify the number of results that the search returns.

When you use the search for an element, a green message box indicates that the search lists all the results. A
yellow message box indicates that the search lists only partial results.

Developing with VMware vCenter Orchestrator

24 VMware, Inc.

Procedure

1 (Optional) If you are editing a workflow in the workflow editor, click Save and Close to exit the editor.

2 From the Orchestrator client menu, select Tools > User preferences.

3 Click the General tab.

4 Type the number of results for searches to return in the Finder Maximum Size text box.

5 Click Save and Close in the User Preferences dialog box.

You modified the number of results that searches return.

Schema Elements
The workflow editor presents the workflow schema elements in menus in the Schema tab.

You can use the schema elements available in the Schema tab to build a workflow.

Table 1‑3. Schema Elements and Icons

Schema Element
Name Description Icon

Location in Workflow
Editor

Start Workflow The starting point of the workflow. All
workflows contain this element and it
cannot be removed from the workflow
schema. A workflow can have only one
start element. Start elements have one
output and no input.

Always present in the
Schema tab

Scriptable task General purpose tasks you define. You
write JavaScript functions in this element.

Generic workflow palette

Decision Boolean function. Decision elements take
one input parameter and return either
true or false. The type of decision that
the element makes, depends on the type of
the input parameter. Decision elements
allow the workflow to branch into different
directions, depending on the input
parameter the decision element receives. If
the received input parameter corresponds
to an expected value, the workflow
continues along a certain route. If the input
is not the expected value, the workflow
continues on an alternative path.

Generic workflow palette

Custom decision Boolean function. Custom decisions can
take several input parameters and process
them according to custom scripts. Returns
either true or false.

Generic workflow palette

Decision activity Boolean function. A decision activity runs a
workflow and binds its output parameters
to a true or a false path.

Generic workflow palette

Chapter 1 Developing Workflows

VMware, Inc. 25

Table 1‑3. Schema Elements and Icons (Continued)

Schema Element
Name Description Icon

Location in Workflow
Editor

User interaction Allows users to pass new input parameters
into the workflow. You can design how the
user interaction element presents the
request for input parameters and place
constraints on the parameters that users
can provide. You can set permissions to
determine which users can provide the
input parameters. When a running
workflow arrives at a user interaction
element, it enters a passive state and
prompts the user for input. You can set a
timeout period within which the users can
answer. The workflow resumes according
to the data the user passes to it, or returns
an exception if the timeout period expires.
While it is waiting for the user to respond,
the workflow token is in the waiting state.

Generic workflow palette

Waiting timer Used by long-running workflows. When a
running workflow arrives at a Waiting
Timer element it enters a passive state. You
set an absolute date at which the workflow
resumes running. While it is waiting for
the date, the workflow token is in the
waiting-signal state.

Generic workflow palette

Waiting event Used in long-running workflows. When a
running workflow arrives at a Waiting
Event element it enters a passive state. You
define a trigger event that the workflow
awaits before it resumes running. While it
is waiting for the event, the workflow
token is in the waiting-signal state.

Generic workflow palette

End workflow The end point of the workflow. You can
have multiple end elements in a schema, to
represent the different possible outcomes
of the workflow. End elements have one
input with no output. When a workflow
reaches an End Workflow element, the
workflow token enters the completed
state.

Generic workflow palette

Thrown exception Creates an exception and stops the
workflow. Multiple occurrences of this
element can be present in the workflow
schema. Exception elements have one input
parameter, which can only be of the String
type, and have no output parameter. When
a workflow reaches an Exception element,
the workflow token enters the failed
state.

Generic workflow palette

Workflow note Allows you to annotate sections of the
workflow. You can stretch notes to
delineate sections of the workflow. You can
change the background color of the notes
to differentiate between different workflow
zones. Workflow notes provide visual
information only, to help you understand
the schema.

Generic workflow palette

Developing with VMware vCenter Orchestrator

26 VMware, Inc.

Table 1‑3. Schema Elements and Icons (Continued)

Schema Element
Name Description Icon

Location in Workflow
Editor

Action element Calls on an action from the Orchestrator
libraries of actions. When a workflow
reaches an action element, it calls and runs
that action.

Generic workflow palette

Workflow element Starts another workflow synchronously. As
soon as a workflow reaches a workflow
element in its schema, it runs that
workflow as part of its own process. The
original workflow does not continue until
the called workflow completes its run.

Generic workflow palette

Foreach element Runs a workflow on every element from an
array. For example, you can run the
Raname Virtual Machine workflow on all
virtual machines from a folder.

Generic workflow palette

Asynchronous
workflow

Starts a workflow asynchronously. When a
workflow reaches an asynchronous
workflow element, it starts that workflow
and continues its own run. The original
workflow does not wait for the called
workflow to finish before continuing.

Generic workflow palette

Schedule workflow Creates a task to run the workflow at a set
time, then the workflow continues its run.

Generic workflow palette

Chapter 1 Developing Workflows

VMware, Inc. 27

Table 1‑3. Schema Elements and Icons (Continued)

Schema Element
Name Description Icon

Location in Workflow
Editor

Nested workflows Starts several workflows simultaneously.
You can choose to nest local workflows
and remote workflows that are in a
different Orchestrator server. You can also
run workflows with different credentials.
The workflow waits until all the nested
workflows complete before it continues its
run.

Generic workflow palette

Pre-Defined Task Noneditable scripted elements that
perform standard tasks that workflows
commonly use. The following tasks are
predefined:
Basic
n Sleep
n Change credential
n Wait until date
n Wait for custom event
n Increase counter
n Decrease counter
Log
n System log
n System warning
n System error
n Server log
n Server warning
n Server error
n System+server log
n System+server warning
n System+server error
Network
n HTTP post
n HTTP get
n Send custom event

Basic, Log, and Network
workflow palette

Schema Element Properties
Schema elements have properties that you can define and edit in the Schema tab of the workflow palette.

Edit the Global Properties of a Schema Element
You define the global properties of a schema element in the element's Info tab.

Prerequisites

Verify that the Schema tab of the workflow editor contains elements.

Procedure

1 Click the Schema tab in the workflow editor.

2 Select an element to edit by clicking the Edit icon ().

A dialog box that lists the properties of the element appears.

3 Click the Info tab.

Developing with VMware vCenter Orchestrator

28 VMware, Inc.

4 Provide a name for the schema element in the Name text box.

This is the name that appears in the schema element in the workflow schema diagram.

5 From the Interaction drop-down menu, select a description.

The Interaction property allows you to select between standard descriptions of how this element
interacts with objects outside of the workflow. This property is for information only.

6 (Optional) Provide a business status description in the Business Status text box.

The Business Status property is a brief description of what this element does. When a workflow is
running, the workflow token shows the Business Status of each element as it runs. This feature is useful
for tracking workflow status.

7 (Optional) In the Description text box, type a description of the schema element.

Schema Element Properties Tabs
You access the properties of a schema element by clicking on an element that you have dragged into the
workflow schema. The properties of the element appear in tabs at the bottom of the workflow editor.

Different schema elements have different properties tabs.

Table 1‑4. Properties Tabs per Schema Element

Schema Element Property Tab Description Applies to Schema Element Type

Attributes Attributes that elements require
from an external source, such as
the user, an event, or a timer.
The attributes can be a timeout
limit, a time and date, a trigger,
or user credentials.

n User Interaction
n Waiting Event
n Waiting Timer

Decision Defines the decision statement.
The input parameter that the
decision element receives either
matches or does not match the
decision statement, resulting
two possible courses of action.

Decision

End Workflow Stops the workflow, either
because the workflow
completed successfully, or
because it encountered an error
and returned an exception.

n End
n Exception

Exception How this schema element
behaves in the event of an
exception.

n Action
n Asynchronous Workflow
n Exception
n Nested Workflows
n Predefined Task
n Schedule Workflow
n Scriptable Task
n User Interaction
n Waiting Event
n Waiting Timer
n Workflow

External Inputs Input parameters that the user
must provide at a certain
moment while the workflow
runs.

User Interaction

Chapter 1 Developing Workflows

VMware, Inc. 29

Table 1‑4. Properties Tabs per Schema Element (Continued)

Schema Element Property Tab Description Applies to Schema Element Type

IN The IN binding for this
element. The IN binding
defines the way in which the
schema element receives input
from the element that precedes
it in the workflow.

n Action
n Asynchronous Workflow
n Custom Decision
n Predefined Task
n Schedule Workflow
n Scriptable Task
n Workflow

Info The schema element's general
properties and description. The
information the Info tab
displays depends on the type of
schema element.

n Action
n Asynchronous Workflow
n Custom Decision
n Decision
n Nested Workflows
n Note
n Predefined Task
n Schedule Workflow
n Scriptable Task
n User Interaction
n Waiting Event
n Waiting Timer
n Workflow

OUT The OUT binding for this
element. The OUT binding
defines the way in which the
schema element binds output
parameters to the workflow
attributes or to the workflow
output parameters.

n Action
n Asynchronous Workflow
n Predefined Task
n Schedule Workflow
n Scriptable Task
n Workflow

Presentation Defines the layout of the input
parameters dialog box the user
sees if the workflow needs user
input while it is running.

User Interaction

Scripting Shows the JavaScript function
that defines the behavior of this
schema element. For
Asynchronous Workflow,
Schedule Workflow, and Action
elements this scripting is read-
only. For scriptable task and
custom decision elements, you
edit the JavaScript in this tab.

n Action
n Asynchronous Workflow
n Custom Decision
n Predefined Task
n Schedule Workflow
n Scriptable Task

Visual Binding Shows a graphical
representation of how the
parameters and attributes of
this schema element bind to the
parameters and attributes of the
elements that come before and
after it in the workflow. This is
another representation of the
element's IN and OUT
bindings.

n Action
n Asynchronous Workflow
n Predefined Task
n Schedule Workflow
n Scriptable Task
n Workflow

Workflows Selects the workflows to nest. Nested Workflows

Developing with VMware vCenter Orchestrator

30 VMware, Inc.

Links and Bindings
Links between elements determine the logical flow of the workflow. Bindings populate elements with data
from other elements by binding input and output parameters to workflow attributes.

To understand links and bindings, you must understand the difference between the logical flow of a
workflow and the data flow of a workflow.

Logical Flow of a Workflow
The logical flow of a workflow is the progression of the workflow from one element to the next in the
schema as the workflow runs. You define the logical flow of the workflow by linking elements in the
schema.

The standard path is the path that the workflow takes through the logical flow if all elements run as
expected. The exception path is the path that the workflow takes through the logical flow if an element does
not run as expected.

Different styles of arrows in the workflow schema denote the different paths that the workflow can take
through its logical flow.
n A blue arrow denotes the standard path that the workflow takes from one element to the next.

n A green arrow denotes the path that the workflow takes if a Boolean decision element returns true.

n A red dotted arrow denotes the path that the workflow takes if a Boolean decision element returns
false.

n A red dashed arrow denotes the exception path that the workflow takes if a workflow element does not
run correctly.

The following figure shows an example workflow schema that demonstrates the different paths that
workflows can take.

Figure 1‑1. Different Workflow Paths Through the Logical Flow of the Workflow

Chapter 1 Developing Workflows

VMware, Inc. 31

This example workflow can take the following paths through its logical flow.

n Standard path, true decision result, no exceptions.

a The decision element returns true.

b The SnapVMsInResourcePool workflow runs successfully.

c The sendHtmlEmail action runs successfully.

d The workflow ends successfully in the completed state.

n Standard path, false decision result, no exceptions.

a The decision element returns false.

b The operation the scriptable task element defines runs successfully.

c The sendHtmlEmail action runs successfully.

d The workflow ends successfully in the completed state.

n true decision result, exception.

a The decision element returns true.

b The SnapVMsInResourcePool workflow encounters an error.

c The workflow returns an exception and stops in the failed state.

n false decision result, exception.

a The decision element returns false.

b The operation the Scriptable task element defines encounters an error.

c The workflow returns an exception and stops in the failed state.

Element Links
Links connect schema elements and define the logical flow of the workflow from one element to the next.

Elements can usually set only one outgoing link to another element in the workflow and one exception link
to an element that defines its exception behavior. The outgoing link defines the standard path of the
workflow. The exception link defines the exception path of the workflow. In most cases, a single schema
element can receive incoming standard path links from multiple elements.

The following elements are exceptions to the preceding statements.

n The Start Workflow element cannot receive incoming links and has no exception link.

n Exception elements can receive multiple incoming exception links, and have no outgoing or exception
links.

n Decision elements have two outgoing links that define the paths the workflow takes depending on the
decision's true or false result. Decisions have no exception link.

n End Workflow elements cannot have outgoing links or exception links.

Create Standard Path Links
Standard path links determine the normal run of the workflow.

When you link one element to another, you always link the elements in the order in which they run in the
workflow. You always start from the element that runs first to create a link between two elements.

Prerequisites

n Open a workflow for editing in the workflow editor.

Developing with VMware vCenter Orchestrator

32 VMware, Inc.

n Verify that the Schema tab of the workflow editor contains elements.

Procedure

1 Place the pointer on the element that you want to connect to another element.

A blue and a red arrow appear on the element's right.

2 Place the pointer on the blue arrow.

The blue arrow enlarges.

3 Left-click the blue arrow, hold down the left mouse button, and move the pointer to the target element.

A blue arrow appears between the two elements and a green rectangle appears around the target
element.

4 Release the left mouse button.

The blue arrow remains between the two elements.

A standard path now links the elements.

What to do next

The elements are joined, but you have not defined the data flow. You must define the IN and OUT bindings
to bind incoming and outgoing data to workflow attributes.

Data Flow of a Workflow
The data flow of a workflow is the manner in which workflow element input and output parameters bind to
workflow attributes as each element of the workflow runs. You define the data flow of a workflow by using
schema element bindings.

When an element in the workflow schema runs, it requires data in the form of input parameters. It takes the
data for its input parameters by binding to a workflow attribute that you set when you create the workflow,
or by binding to an attribute that a preceding element in the workflow set when it ran.

The element processes the data, possibly transforms it, and generates the results of its run in the form of
output parameters. The element binds its resulting output parameters to new workflow attributes that it
creates. Other elements in the schema can bind to these new workflow attributes as their input parameters.
The workflow can generate the attributes as its output parameters at the end of its run.

The following figure shows a very simple workflow. The blue arrows represent the element linking and the
logical flow of the workflow. The red lines show the data flow of the workflow.

Chapter 1 Developing Workflows

VMware, Inc. 33

Figure 1‑2. Example of Workflow Data Flow

The data flows through the workflow as follows.

1 The workflow starts with input parameters a and b.

2 The first element processes parameter a and binds the result of the processing to workflow attribute c.

3 The first element processes parameter b and binds the result of the processing to workflow attribute d.

4 The second element takes workflow attribute c as an input parameter, processes it, and binds the
resulting output parameter to workflow attribute e.

5 The second element takes workflow attribute d as an input parameter, processes it, and generates
output parameter f.

6 The workflow ends and generates workflow attribute f as its output parameter, the result of its run.

Developing with VMware vCenter Orchestrator

34 VMware, Inc.

Element Bindings
You must bind all workflow element input and output parameters to workflow attributes. Bindings set data
in the elements, and define the output and exception behavior of the elements. Links define the logical flow
of the workflow, whereas bindings define the data flow.

To set data in an element, generate output parameters from the element after processing, and handle any
errors that might occur when the element runs, you must set the element binding.

IN bindings Set a schema element's incoming data. You bind the element's local input
parameters to source workflow attributes. The IN tab lists the element's
input parameters in the Local Parameter column. The IN tab lists the
workflow attributes to which the local parameter binds in the Source
Parameter column. The tab also displays the parameter type and a
description of the parameter.

OUT bindings Change workflow attributes and generate output parameters when an
element finishes its run. The OUT tab lists the element's output parameters
in the Local Parameter column. The OUT tab lists the workflow attributes to
which the local parameter binds in the Source Parameter column. The tab
also displays the parameter type and a description of the parameter.

Exception bindings Link to exception handlers if the element encounters an exception when it
runs.

IN bindings read values from the bound source parameter. OUT bindings write values into the bound source
parameter.

You must use IN bindings to bind every attribute or input parameter you use in a schema element to a
workflow attribute. If the element changes the values of the input parameters that it receives when it runs,
you must bind them to a workflow attribute by using an OUT binding. Binding the element's output
parameters to workflow elements lets other elements that follow it in the workflow schema to take those
output parameters as their input parameters.

A common mistake when creating workflows is to not bind output parameter values to reflect the changes
that the element makes to the workflow attributes.

IMPORTANT When you add an element that requires input and output parameters of a type that you have
already defined in the workflow, Orchestrator sets the bindings to these parameters. You must verify that
the parameters that Orchestrator binds are correct, in case the workflow defines different parameters of the
same type to which the element can bind.

Define Element Bindings
After you link elements to create the logical flow of the workflow, you define element bindings to define
how each element processes the data it receives and generates.

Prerequisites

Verify that you have a workflow schema in the Schema tab of the workflow editor, and that you have
created links between the elements.

Procedure

1 Click the Edit icon () of the element on which to set the bindings.

A dialog box that lists the properties of the element appears.

Chapter 1 Developing Workflows

VMware, Inc. 35

2 Click the IN tab.

The contents of the IN tab depend on the type of element you selected.

n If you selected a predefined task, workflow, or action element, the IN tab lists the possible local
input parameters for that type of element, but the binding is not set.

n If you selected another type of element, you can select from a list of input parameters and
attributes you already defined for the workflow by right-clicking in the IN tab and selecting Bind
to workflow parameter/attribute.

n If the required attribute does not exist yet, you can create it by right-clicking in the IN tab and
selecting Bind to workflow parameter/attribute > Create parameter/attribute in workflow.

3 If an appropriate parameter exists, choose an input parameter to bind, and click the Not set button in
the Source Parameter text box.

A list of possible source parameters and attributes to bind to appears.

4 Choose a source parameter to bind to the local input parameter from the list proposed.

5 (Optional) If you have not defined the source parameter to which to bind, you can create it by clicking
the Create parameter/attribute in workflow link in the parameter selection dialog box.

6 Click the OUT tab.

The contents of the OUT tab depend on the type of element you selected.

n If you selected a predefined task, workflow, or action element, the OUT tab lists the possible local
output parameters for that type of element, but the binding is not set.

n If you selected another type of element, you can select from a list of output parameters and
attributes you defined for the workflow by right-clicking in the OUT tab and selecting Bind to
workflow parameter/attribute.

n If the required attribute does not exist, you can create it by right-clicking in the IN tab and selecting
Bind to workflow parameter/attribute > Create parameter/attribute in workflow.

7 Choose a parameter to bind.

8 Click the Source Parameter > Not set button.

9 Choose a source parameter to bind to the input parameter.

10 (Optional) If you did not define the parameter to which to bind, you can create it by clicking the Create
parameter/attribute in workflow button in the parameter selection dialog box.

You defined the input parameters that the element receives and the output parameters that it generates, and
bound them to workflow attributes and parameters.

What to do next

You can create forks in the path of the workflow by defining decisions.

Decisions
Workflows can implement decision functions that define different courses of action according to a Boolean
true or false statement.

Decisions are forks in the workflow. Workflow decisions are made according to inputs provided by you, by
other workflows, by applications, or by the environment in which the workflow is running. The value of the
input parameter that the decision element receives determines which branch of the fork the workflow takes.
For example, a workflow decision might receive the power status of a given virtual machine as its input. If
the virtual machine is powered on, the workflow takes a certain path through its logical flow. If the virtual
machine is powered off, the workflow takes a different path.

Developing with VMware vCenter Orchestrator

36 VMware, Inc.

Decisions are always Boolean functions. The only possible outcomes for each decision are true or false.

Custom Decisions
Custom decisions differ from standard decisions in that you define the decision statement in a script.
Custom decisions return true or false according to the statement you define, as the following example
shows.

if (decision_statement){

 return true;

}else{

 return false;

}

Create Decision Element Links
Decision elements differ from other elements in a workflow. They have only true or false output
parameters. Decision elements have no exception linking.

Prerequisites

Verify that the Schema tab of the workflow editor contains elements, including at least one decision element
that is not linked to other elements.

Procedure

1 Place the mouse pointer on a decision element to link it to two other elements that define two possible
branches in the workflow.

A blue arrow and a red arrow appear on the element's right.

2 Place the pointer on the blue arrow, and while keeping the left mouse button pressed, move the pointer
to the target element.

A green arrow appears between the two elements and the target element turns green. The green arrow
represents the true path the workflow takes if the input parameter or attribute received by the decision
element matches the decision statement.

3 Release the left mouse button.

The green arrow remains between the two elements. You have defined the path the workflow takes
when the decision element receives the expected value.

4 Place the pointer on the decision element, hold down the left mouse button, and move the pointer to the
target element.

A dotted red arrow appears between the two elements and the target element turns green. The red
arrow represents the false path that the workflow takes if the input parameter or attribute received by
the decision element does not match the decision statement.

5 Release the left mouse button.

The dotted red arrow remains between the two elements. You have defined the path the workflow
takes when the decision element receives unexpected input.

You have defined the possible true or false paths that the workflow takes depending on the input
parameter or attribute the decision element receives.

What to do next

Define the decision statement. See “Create Workflow Branches Using Decisions,” on page 38.

Chapter 1 Developing Workflows

VMware, Inc. 37

Delete a Linked Decision Element
When you delete a linked decision element from a workflow schema, you must specify which workflow
paths to delete.

Prerequisites

Verify that the Schema tab of the workflow editor contains elements, including at least one decision element
with true and false paths.

Procedure

1 Select the decision element and press Delete.

A dialog box with available options appears.

2 Select which decision branch to delete.

Option Description

Success branch The decision element and all elements that follow the true decision path
are deleted from the workflow schema.

Failure branch The decision element and all elements that follow the false decision path
are deleted from the workflow schema.

Both branches The decision element and all elements that follow both decision paths are
deleted from the workflow schema.

None Only the decision element and its links are deleted from the workflow
schema. All elements that follow both decision paths remain in the
workflow schema.

3 Click OK.

Create Workflow Branches Using Decisions
Decision elements are simple Boolean functions that you use to create branches in workflows. Decision
elements determine whether the input received matches the decision statement you set. As a function of this
decision, the workflow continues its course along one of two possible paths.

Prerequisites

Verify that you have a decision element linked to two other elements in the schema in the workflow editor
before you define the decision.

Procedure

1 Click the Edit icon () of the decision element.

A dialog box that lists the properties of the decision element appears.

2 Click the Decision tab in the dialog box.

3 Click the Not Set (NULL) link to select the source input parameter for this decision.

A dialog box that lists all the attributes and input parameters defined in this workflow appears.

4 Select an input parameter from the list by double-clicking it.

5 If you did not define the source parameter to which to bind, create it by clicking the Create
attribute/parameter in workflow link in the parameter selection dialog box.

Developing with VMware vCenter Orchestrator

38 VMware, Inc.

6 Select a decision statement from the drop-down menu.

The statements that the menu proposes are contextual, and differ according to the type of input
parameter selected.

7 Add a value that you want the decision statement to match.

Depending on the input type and the statement you select, you might see a Not Set (NULL) link in the
value text box. Clicking this link gives you a predefined choice of values. Otherwise, for example for
Strings, this is a text box in which you provide a value.

You defined a statement for the decision element. When the decision element receives the input parameter,
it compares the value of the input parameter to the value in the statement and determines whether the
statement is true or false.

What to do next

You must set how the workflow handles exceptions.

Exception Handling
Exception handling catches any errors that occur when a schema element runs. Exception handling defines
how the schema element behaves when the error occurs.

All elements in a workflow, except for decisions and start and end elements, contain a specific output
parameter type that serves only for handling exceptions. If an element encounters an error during its run, it
can send an error signal to an exception handler. Exception handlers catch the error and react according to
the errors they receive. If the exception handlers you define cannot handle a certain error, you can bind an
element's exception output parameter to an Exception element, which ends the workflow run in the failed
state.

Exceptions act as a try and catch sequence within a workflow element. If you do not need to handle a given
exception in an element, you do not have to bind that element's exception output parameter.

The output parameter type for exceptions is always an errorCode object.

Create Exception Bindings
Elements can set bindings that define how the workflow behaves if it encounters an error in that element.

Prerequisites

Verify that the Schema tab of the workflow editor contains elements.

Procedure

1 Place the pointer on the element for which you want to define exception binding.

A blue and a red arrow appear on the element's right.

2 Place the pointer on the red arrow until it enlarges, hold down the left mouse button, and drag the red
arrow to the target element.

A red dashed arrow links the two elements. The target element defines the behavior of the workflow if
the element that links to it encounters an error.

3 Click the element that links to the exception handling element.

4 Click the Exceptions tab in the schema element properties tabs at the bottom of the Schema tab.

Chapter 1 Developing Workflows

VMware, Inc. 39

5 Click the Not set button to set the Output Exception Binding value.

n Select a parameter to bind to the exception output parameter from the exception attribute binding
dialog box.

n Click Create parameter/attribute in workflow to create an exception output parameter.

6 Click the target element that defines the exception handling behavior.

7 Click the IN tab in the schema element properties tabs at the bottom of the Schema tab.

8 Right-click in the IN tab and select Bind to workflow parameter/attribute.

9 Select the exception output parameter and click Select.

10 Click the OUT tab for the exception handling element in the schema element properties tabs at the
bottom of the Schema tab

11 Define the behavior of the exception handling element.

n Right-click in the OUT tab and select Bind to workflow parameter/attribute to select an output
parameter for the exception handling element to generate.

n Click the Scripting tab and use JavaScript to define the behavior of the exception handling element.

You defined how the element handles exceptions.

What to do next

You must define how to obtain input parameters from users when they run the workflow.

Foreach Elements and Composite Types
You can insert a Foreach element in the workflow that you develop to run a subworkflow that iterates over
arrays of parameters or attributes. To improve the understanding and readability of the workflow, you can
group several workflow parameters of different types that are logically connected in a single type that is
called a composite type.

Using Foreach Elements
A Foreach element runs a subworkflow iteratively over an array of input parameters or attributes. You can
select the arrays over which the subworkflow is run, and can pass the values for the elements of such an
array when you run the workflow. The subworkflow runs as many times as the number of elements that
you have defined in the array.

If you have a configuration element that contains an array of attributes, you can run a workflow that iterates
over these attributes in a Foreach element.

For example, suppose that you have 10 virtual machines in a folder that you want to rename. To do this, you
must insert a Foreach element in a workflow and define the Rename virtual machine workflow as a
subworkflow in the element. The Rename virtual machine workflow takes two input parameters, a virtual
machine and its new name. You can promote these parameters as input to the current workflow, and as a
result, they become arrays over which the Rename virtual machine workflow will iterate. When you run
your workflow, you can specify the 10 virtual machines in the folder and their new names. Every time the
workflow runs, it takes an element from the array of the virtual machines and an element from the array of
the new names for the virtual machines.

Using Composite Types
A composite type is a group of more than one input parameter or attribute that are connected logically but
are of different types. In a Foreach element, you can bind a group of parameters as a composite value. In this
way, the Foreach element takes the values for the grouped parameters at once in every subsequent run of
the workflow.

Developing with VMware vCenter Orchestrator

40 VMware, Inc.

For example, suppose that you are about to rename a virtual machine. You need the virtual machine object
and its new name. If you have to rename multiple virtual machines, you need two arrays, one for the virtual
machines and one for their names. These two arrays are not explicitly connected. A composite type lets you
have one array where each element contains both the virtual machine and its new name. In this way, the
connection between those two parameters in case of multiple values is specified explicitly and not implied
by the workflow schema.

NOTE You cannot run a workflow that contains composite types from an Orchestrator Web view or from
the vSphere Web Client.

Define a Foreach Element
If you want to run a subworkflow multiple times by passing different values for its parameters or attributes
in every subsequent run, you can insert a Foreach element in the parent workflow.

When you insert a Foreach element, you must select at least one array over which the Foreach element
iterates. An array element can have different values for each subsequent workflow run.

If the subworkflow has output parameters, you should select the output parameters of the Foreach element
in which to accumulate workflow outputs , so that the subworkflow can iterate over them as well.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 In the workflow editor, select the Schema tab.

2 From the Generic menu, drag a Foreach element in the workflow schema.

3 Select a workflow from the Chooser dialog box.

The following notification appears at the top of the schema pane.

Do you want to add the activity's parameters as input/output to the current workflow?

4 On the notification, click Setup.

A pop-up window with the available options appears.

5 Select the mapping type for each input parameter.

Option Description

Input The argument is mapped to an input workflow parameter.

Skip The argument is mapped to a NULL value.

Value The argument is mapped to an attribute with a value that you can set from
the Value column.

6 Select the mapping type for each output parameter.

Option Description

Output The argument is mapped to an output workflow parameter.

Skip The argument is mapped to a NULL value.

Local variable The argument is mapped to an attribute.

7 Click Promote.

8 Right-click the Foreach element and select Synchronize > Synchronize presentation.

A confirmation dialog box appears.

Chapter 1 Developing Workflows

VMware, Inc. 41

9 Click Ok to propagate the presentation of the Foreach element to the current workflow.

A dialog box displays information about the outcome of the operation.

10 On the Inputs tab, verify that the subworkflow's parameters are added as elements of type array.

11 On the Outputs tab, verify that the subworkflow's parameters are added as elements of type array.

You defined a Foreach element in your workflow. The Foreach element runs a workflow that takes as
parameters every element from the array of parameters or attributes that you have defined.

For parameters or attributes that are not defined as arrays, the workflow takes the same value in every
subsequent run.

Example: Rename Virtual Machines by Using a Foreach Element

You can use a Foreach element to rename several virtual machines at once. You have to insert a Foreach
element in a workflow and promote the vm and the newName parameters as input to the current workflow. In
this way, when you run the workflow, you specify the virtual machines to rename and the new names for
the virtual machines. The virtual machines are included as elements in the array that you created for the vm
parameter. The new names for the virtual machines are included in the array that you created for the
newName parameter.

Define a Composite Type in a Foreach Element
You can group multiple workflow parameters that are connected logically in a new type that is called a
composite type. You can use a Foreach element to bind a group of parameters as a composite value to
connect several arrays of parameters in a single array.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Verify that you have a Foreach element in your workflow.

Procedure

1 Select the IN or the OUT tab of the Foreach element.

2 Select a local parameter that you want to group with other local parameters in a composite type.

3 Click Bind a group of parameters as composite value at the top of the IN or the OUT tab.

4 In the Bindings pane, select the parameters that you want to group as a composite type.

5 Select Bind as iterator.

You have set the Foreach element to iterate over an array of the composite type.

6 Click Accept.

You defined a composite type and made sure that the workflow will iterate over an array of this composite
type. Parameters that are grouped as a composite type are named composite_type_name.parameter_name. For
example, if you create a snapshots composite type, the parameters that are group in the type can be
snapshots.vm[in-parameter] or snapshots.name[in-parameter]. Every element from the array of the
composite type contains a single instance of every parameter that you grouped in the composite type.

Example: Rename Virtual Machines

Suppose that you want to rename 10 virtual machines at a time. For this, you insert a Foreach element in a
workflow and select the Rename virtual machine workflow in the element. You create a composite type to
connect the vm and the newName parameters explicitly. You bind the composite type as an iterator, thus
creating a single array that contains both the vm and the newName parameter.

Developing with VMware vCenter Orchestrator

42 VMware, Inc.

Obtaining Input Parameters from Users When a Workflow Starts
If a workflow requires input parameters, it opens a dialog box in which users enter the required input
parameter values when it runs. You can organize the content and layout, or presentation, of this dialog box
in Presentation tab in the workflow editor.

The way you organize parameters in the Presentation tab translates into the input parameters dialog box
when the workflow runs, and in the dialog box that opens when you run a workflow from a Web view.

The Presentation tab also allows you to add descriptions of the input parameters to help users when they
provide input parameters. You can also set properties and constraints on parameters in the Presentation tab
to limit the parameters that users provide. If the parameters the user provides do not meet the constraints
you set in the Presentation tab, the workflow will not run.

IMPORTANT The use of OGNL expressions in workflow presentations is deprecated as of Orchestrator 4.1.
Using OGNL expressions in workflow presentations is not supported in releases of Orchestrator later than
4.1.

n Creating the Input Parameters Dialog Box In the Presentation Tab on page 43
You define the layout of the dialog box in which users provide input parameters when they run a
workflow in the Presentation tab of the workflow editor.

n Setting Parameter Properties on page 45
Orchestrator allows you to define properties to qualify the input parameter values that users provide
when they run workflows. The parameter properties you define impose limits on the types and values
of the input parameters the users provide.

Creating the Input Parameters Dialog Box In the Presentation Tab
You define the layout of the dialog box in which users provide input parameters when they run a workflow
in the Presentation tab of the workflow editor.

The Presentation tab allows you to group input parameters into categories and to define the order in which
these categories appear in the input parameters dialog box.

Presentation Descriptions
You can add an associated description for each parameter or group of parameters, which appears in the
input parameters dialog box. The descriptions provide information to the users to help them provide the
correct input parameters. You can enhance the layout of the description text by using HTML formatting.

Defining Presentation Input Steps
By default, the input parameters dialog box lists all the required input parameters in a single list. To help
users enter input parameters, you can define nodes, called input steps, in the presentation tab. Input steps
group input parameters of a similar nature. The input parameters under an input step appear in a distinct
section in the input parameters dialog box when the workflow runs.

Defining Presentation Display Groups
Each input step can have nodes of its own called display groups. The display groups define the order in
which parameter input text boxes appear within their section of the input parameters dialog box. You can
define display groups independently of input steps.

Chapter 1 Developing Workflows

VMware, Inc. 43

Create the Presentation of the Input Parameters Dialog Box
You create the presentation of the dialog box in which users provide input parameters when they run a
workflow in the Presentation tab in the workflow editor.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Verify that the workflow has a defined list of input parameters.

Procedure

1 In the workflow editor, click the Presentation tab.

By default, all of the workflow's parameters appear under the main Presentation node in the order in
which you create them.

2 Right-click the Presentation node and select Create new step.

A New Step node appears under the Presentation node.

3 Provide an appropriate name for the step and press Enter.

This name appears as a section header in the input parameters dialog box when the workflow runs.

4 Click the input step and add a description in the General tab in the bottom half of the Presentation tab.

This description appears in the input parameters dialog box to provide information to the users to help
them provide the correct input parameters. You can enhance the layout of the description text by using
HTML formatting.

5 Right-click the input step you created and select Create display group.

A New Group node appears under the input step node.

6 Provide an appropriate name for the display group and press Enter.

This name appears as a subsection header in the input parameters dialog box when the workflow runs.

7 Click the display group and add a description in the General tab in the bottom half of the Presentation
tab.

This description appears in the input parameters dialog box. You can enhance the layout of the
description text by using HTML formatting. You can add a parameter value to a group description by
using an OGNL statement, such as ${#param}.

8 Repeat the preceding steps until you have created all the input steps and display groups to appear in
the input parameters dialog box when the workflow runs.

9 Drag parameters from under the Presentation node to the steps and groups of your choice.

You created the layout of the input parameters dialog box through which users provide input parameter
values when the workflow runs.

What to do next

You must set the parameter properties.

Developing with VMware vCenter Orchestrator

44 VMware, Inc.

Setting Parameter Properties
Orchestrator allows you to define properties to qualify the input parameter values that users provide when
they run workflows. The parameter properties you define impose limits on the types and values of the input
parameters the users provide.

Every parameter can have several properties. You define an input parameter's properties in the Properties
tab for a given parameter in the Presentation tab.

Parameter properties validate the input parameters and modify the way that text boxes appear in the input
parameters dialog box. Some parameter properties can create dependencies between parameters.

Static and Dynamic Parameter Property Values
A parameter property value can be either static or dynamic. Static property values remain constant. If you
set a property value to static, you set or select the property's value from a list that the workflow editor
generates according to the parameter type.

Dynamic property values depend on the value of another parameter or attribute. You define the functions
by which dynamic properties obtain values by using an object graph navigation language (OGNL)
expression. If a dynamic parameter property value depends on the value of another parameter property
value and the other parameter property value changes, the OGNL expression recalculates and changes the
dynamic property value.

IMPORTANT The use of OGNL expressions in workflow presentations is deprecated as of Orchestrator 4.1.
Using OGNL expressions in workflow presentations is not supported in releases of Orchestrator later than
4.1.

Set Parameter Properties
When a workflow starts, it validates input parameter values from users against any parameter properties
that you set.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Verify that the workflow has a defined list of input parameters.

Procedure

1 In the workflow editor, click the Presentation tab.

2 Click a parameter in the Presentation tab.

The parameter's General and Properties tabs appear at the bottom of the Presentation tab.

3 Click the parameter's Properties tab.

4 Right-click in the Properties tab and select Add property.

A dialog box opens, presenting a list of the possible properties for a parameter of the type selected.

5 Select a property from the list presented in the dialog box and click OK.

The property appears in the Properties tab.

Chapter 1 Developing Workflows

VMware, Inc. 45

6 Under Value, make the property value either static or dynamic by selecting the corresponding symbol
from the drop-down menu.

Option Description

Static property

Dynamic property

7 If you set the property value to static, you select a property value according to the type of parameter for

which you are setting the properties.

8 If you set the property value to dynamic, you define the function to obtain the parameter property
value by using an OGNL expression.

The workflow editor provides help writing the OGNL expression.

a
Click the icon to obtain a list of all the attributes and parameters defined by the workflow that
this expression can call upon.

b
Click the icon to obtain a list of all the actions in the Orchestrator API that return an output
parameter of the type for which you are defining the properties.

Clicking items in the proposed lists of parameters and actions adds them to the OGNL expression.

9 Click Save at the bottom of the workflow editor.

You defined the properties of the workflow's input parameters.

What to do next

Validate and debug the workflow.

Workflow Input Parameter Properties
You can set parameter properties to constrain the input parameters that users provide when they run
workflows.

Different parameter types can have different properties.

Table 1‑5. Workflow Input Parameter Properties

Parameter Property Parameter Type Description

Maximum string length String Sets a maximum length for the
parameter.

Minimum string length String Sets a minimum length for the
parameter.

Matching regular expression String Validates the input using a regular
expression.

Maximum number value Number Sets a maximum value for the
parameter.

Minimum number value Number Sets a minimum value for the
parameter.

Number format Number Formats the input for the parameter.

Mandatory input All simple types Makes the parameter mandatory.

Developing with VMware vCenter Orchestrator

46 VMware, Inc.

Table 1‑5. Workflow Input Parameter Properties (Continued)

Parameter Property Parameter Type Description

Predefined answers All simple types Pre-defines a list of possible values for
the property as an array of simple
types. You either define the array
manually or the property calls an
action that returns an array of objects
of the appropriate type.

Predefined list of elements Any simple or complex types Pre-defines a list of possible values for
the property as an array of simple or
complex types. Calls an action that
returns an array of objects of the
appropriate type.

Show parameter input Any simple or complex types Shows or hides a parameter text box in
the presentation dialog box, depending
on the value of a preceding Boolean
parameter.

Hide parameter input Any simple or complex types Similar to Show parameter input, but
takes the negative value of a previous
Boolean parameter.

Matching expression Any parameter type obtained from a
plug-in

The input parameter matches a given
expression.

Show in inventory Any parameter type obtained from a
plug-in

If set, you can run the present
workflow on any object of this type by
right-clicking it in the inventory view
and selecting Run workflow.

Specify a root object to be shown in
the chooser. Root object is provided
from a parameter or attribute.

Any parameter type obtained from a
plug-in

Specifies the root object if the selector
for this parameter is a hierarchical list
selector.

Select as Any parameter type obtained from a
plug-in

Use a list or hierarchical list selector to
select the parameter.

Default value Any simple or complex types Default value for this parameter.

Custom validation OGNL scriptable validation If the OGNL expression returns a
string, the validation shows this string
as the text of the error result.

Data binding Any simple or complex types Binds to a property that you have
already defined in another parameter.

Authorized only Any parameter type obtained from a
plug-in

Only authorized users can access this
parameter.

Multi-lines text input Any simple or complex types Allows users to enter multiple lines of
text in the input parameters dialog
box.

Predefined Constant Values for OGNL Expressions
You can use predefined constants when you create OGNL expressions to obtain dynamic parameter
property values.

Orchestrator defines the following constants for use in OGNL expressions.

Chapter 1 Developing Workflows

VMware, Inc. 47

Table 1‑6. Predefined OGNL Constant Values

Constant Value Description

${#__current} Current value of the custom validation property or
matching expression property

${#__username} User name of the user who started the workflow

${#__userdisplayname} Display name of the user who started the workflow

${#__serverurl} URL containing the IP address of the server from which the
user starts the workflow. The URL consists of the server IP
address and a lookup port:
{ServerIP}:{lookupPort}

${#__datetime} Current date and time

${#__date} Current date, with time set to 00:00:00

${#__timezone} Current timezone

(Optional) Requesting User Interactions While a Workflow Runs
A workflow can sometimes require additional input parameters from an outside source while it runs. These
input parameters can come from another application or workflow, or the user can provide them directly.

For example, if a certain event occurs while a workflow runs, the workflow can request human interaction
to decide what course of action to take. The workflow waits before continuing, either until the user responds
to the request for information, or until the waiting time exceeds a possible timeout period. If the waiting
time exceeds the timeout period, the workflow returns an exception.

The default attributes for user interactions are security.group and timeout.date. When you set the
security.group attribute to a given LDAP user group, you limit the permission to respond to the user
interaction request to members of that user group.

When you set the timeout.date attribute, you set a time and date until which the workflow waits for the
information from the user. You can set an absolute date, or you can create a scripted workflow element to
calculate a time relative to the current time.

Procedure

1 Add a User Interaction to a Workflow on page 49
You request input parameters from users during a workflow run by adding a User Interaction schema
element to the workflow. When a workflow encounters a User Interaction element, it suspends its run
and waits for the user to provide the data that it requires.

2 Set the User Interaction security.group Attribute on page 49
The security.group attribute of a user interaction element sets which users or groups of users have
permission to respond to the user interaction.

3 Set the timeout.date Attribute to an Absolute Date on page 50
You set the timeout.date attribute for a user interaction to set how long the workflow waits for a user
to respond to a user interaction.

4 Calculate a Relative Timeout for User Interactions on page 51
You can calculate in a Date object a relative time and date at which a user interaction times out.

5 Set the timeout.date Attribute to a Relative Date on page 52
You can set the timeout.date attribute of a User Interaction element to a relative time and date by
binding it to a Date object. You define the object in a scripted function.

Developing with VMware vCenter Orchestrator

48 VMware, Inc.

6 Define the External Inputs for a User Interaction on page 53
You specify the information that users must provide during a workflow run as the input parameters of
a user interaction.

7 Define User Interaction Exception Behavior on page 54
If a user does not provide the input parameters within the timeout period, the user interaction returns
an exception. You can define the exception behavior in a scripted function.

8 Create the Input Parameters Dialog Box for the User Interaction on page 55
Users provide input parameters during a workflow run in an input parameters dialog box, in the same
way that they provide input parameters when a workflow first starts.

9 Respond to a Request for a User Interaction on page 56
Workflows that require interactions from users during their run suspend their run either until the user
provides the required information or until the workflow times out.

Add a User Interaction to a Workflow
You request input parameters from users during a workflow run by adding a User Interaction schema
element to the workflow. When a workflow encounters a User Interaction element, it suspends its run and
waits for the user to provide the data that it requires.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag a User Interaction element to the appropriate position in the workflow schema.

2 Click the User Interaction element to display its properties tabs in the bottom half of the Schema tab.

3 Click the Edit icon () of the User Interaction element.

4 Provide a name and a description for the user interaction in the Info tab and click Close.

5 Click Save.

You added a user interaction element to a workflow. When the workflow reaches this element, it waits for
information from the user before continuing its run.

What to do next

Set the security.group attribute of the user interaction to limit permission to respond to the user
interaction to a user or user group. See “Set the User Interaction security.group Attribute,” on page 49.

Set the User Interaction security.group Attribute
The security.group attribute of a user interaction element sets which users or groups of users have
permission to respond to the user interaction.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements and a user interaction to the workflow schema.

Chapter 1 Developing Workflows

VMware, Inc. 49

n Identify an LDAP user group to respond to the user interaction request.

Procedure

1 Click the Edit icon () of the User Interaction element in the workflow schema.

2 Click the Attributes tab for the user interaction.

3 Click Not set for the security.group source parameter to set which users can respond to the user
interaction.

4 (Optional) Select NULL to allow all users to respond to the request for user interaction.

5 To limit the permission to respond to a specific user or user group, click Create parameter/attribute in
workflow.

The Parameter information dialog box opens.

6 Name the parameter.

7 Select Create workflow ATTRIBUTE with the same name to create the LdapGroup attribute in the
workflow.

8 Click Not set for the parameter value to open the LdapGroup selection box.

9 Type the name of the LDAP user group in the Filter text box.

10 Select the LDAP user group from the list and click Select.

For example, selecting the Administrators group means that only members of that group can respond
to this request for user interaction.

You limited the permission to respond to the user interaction request.

11 Click OK to close the Parameter information dialog box.

You set the security.group attribute for the user interaction.

What to do next

Set the timer.date attribute to set the timeout period for the user interaction.

n To set the timeout to an absolute date and time, see “Set the timeout.date Attribute to an Absolute
Date,” on page 50.

n To create a function to calculate a timeout that is relative to the current date and time, see “Calculate a
Relative Timeout for User Interactions,” on page 51.

Set the timeout.date Attribute to an Absolute Date
You set the timeout.date attribute for a user interaction to set how long the workflow waits for a user to
respond to a user interaction.

You set an absolute time and date in the Date object. When the time on the given date arrives, the workflow
that is waiting for a user interaction times out and ends in the Failed state. For example, you can set the user
interaction to timeout at midday on February 12th. To calculate a timeout that is relative to the current time
and date, see “Calculate a Relative Timeout for User Interactions,” on page 51.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Add a user interaction element to the workflow schema.

n Set the security.group attribute for the user interaction.

Developing with VMware vCenter Orchestrator

50 VMware, Inc.

Procedure

1 Click the Edit icon () of the User Interaction element in the workflow schema.

2 Click the Attributes tab for the user interaction.

3 Click Not set for the timeout.date source parameter to set the timeout parameter value.

4 (Optional) Select NULL to allow the user interaction to set the workflow to wait indefinitely for the user
to respond to the user interaction.

5 Click Create parameter/attribute in workflow to set the workflow to fail after a timeout period.

The Parameter information dialog box opens.

6 Name the parameter.

7 Select Create workflow ATTRIBUTE with the same name to create a Date attribute in the workflow.

8 Click Not set for the parameter Value.

9 Use the calendar to select an absolute date and time until which the workflow waits for the user to
respond.

10 Click OK to close the calendar.

11 Click OK to close the Parameter information dialog box.

You set the timeout.date attribute to an absolute date. The workflow times out if the user does not respond
to the user interaction before this time and date.

What to do next

Define the external input parameters that the user interaction requires from the user. See “Define the
External Inputs for a User Interaction,” on page 53.

Calculate a Relative Timeout for User Interactions
You can calculate in a Date object a relative time and date at which a user interaction times out.

You can set an absolute time and date in a Date object. When the time on the given date arrives, the request
for a user interaction times out. Alternatively, you can create a workflow element that calculates and
generates a relative Date object according to a function that you define. For example, you can create a
relative Date object that adds 24 hours to the current time.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Add a user interaction element to the workflow schema.

n Set the security.group attribute for the user interaction.

Procedure

1 Drag a Scriptable task element from the Generic menu to the schema of a workflow, before the element
that requires the relative Date object for its timeout.date attribute.

2 Click the Edit icon () of the Scriptable task element in the workflow schema.

3 Provide a name and description for the scripted workflow element in the Info properties tab.

4 Click the OUT properties tab, and click the Bind to workflow parameter/attribute icon ().

Chapter 1 Developing Workflows

VMware, Inc. 51

5 Click Create parameter/attribute in workflow to create a workflow attribute.

a Name the attribute timerDate.

b Select Date from the list of attribute types.

c Select Create workflow ATTRIBUTE with the same name.

d Leave the attribute value set to Not set, because a scripted function will provide this value.

e Click OK.

6 Click the Scripting tab for the scripted workflow element.

7 Define a function to calculate and generate a Date object named timerDate in the scripting pad in the
Scripting tab.

For example, you can create a Date object by implementing the following JavaScript function, in which
the timeout period is a relative delay in milliseconds.

timerDate = new Date();

System.log("Current date : '" + timerDate + "'");

timerDate.setTime(timerDate.getTime() + (86400 * 1000));

System.log("Timer will expire at '" + timerDate + "'");

The preceding example JavaScript function defines a Date object that obtains the current date and time
by using the getTime method and adds 86,400,000 milliseconds, or 24 hours. The Scriptable Task
element generates this value as its output parameter.

8 Click Close.

9 Click Save.

You created a function that calculates a time and date relative to the current time and date and generates a
Date object. A User Interaction element can receive this Date object as an input parameter to set the timeout
period until which it waits for input from the user. When the workflow arrives at the User Interaction
element, it suspends its run and waits either until the user provides the required information, or for 24
hours before it times out.

What to do next

You must bind the Date object to the User Interaction element's timeout.date parameter. See “Set the
timeout.date Attribute to a Relative Date,” on page 52.

Set the timeout.date Attribute to a Relative Date
You can set the timeout.date attribute of a User Interaction element to a relative time and date by binding it
to a Date object. You define the object in a scripted function.

If you create a relative Date object in a scripted function, you can bind the timeout.date attribute of a user
interaction to this Date object. For example, if you bind the timeout.date attribute to a Date object that adds
24 hours to the current time, the user interaction times out after waiting for 24 hours.

Prerequisites

n Add a user interaction element to the workflow schema.

n Set the security.group attribute for the user interaction.

n Create a scripted function that calculates a relative time and date and encapsulates it in a Date object in
the workflow. See “Calculate a Relative Timeout for User Interactions,” on page 51.

Developing with VMware vCenter Orchestrator

52 VMware, Inc.

Procedure

1 Click the Edit icon () of the User Interaction element in the workflow schema.

2 Click the Attributes tab for the user interaction.

3 Click Not set for the timeout.date source parameter to set the timeout parameter value.

4 Select the Date object that encapsulates a relative time and date that you defined in a scripted function
and click Select.

You set the timeout.date attribute to a relative date and time that a scripted function calculates.

What to do next

Define the external input parameters that the user interaction requires from the user. See “Define the
External Inputs for a User Interaction,” on page 53.

Define the External Inputs for a User Interaction
You specify the information that users must provide during a workflow run as the input parameters of a
user interaction.

When a workflow reaches a user interaction element, it waits until a user provides the information that the
user interaction requires as its input parameters.

Prerequisites

n Add a user interaction element to the workflow schema.

n Set the security.group attribute for the user interaction.

n Set the timer.date attribute for the user interaction

Procedure

1 Click the Edit icon () of the User Interaction element in the workflow schema.

2 Click the External inputs tab.

3 Click the Bind to workflow parameter/attribute icon () to define the parameters that the user must
provide in the user interaction.

4 (Optional) If you already defined the input parameters in the workflow, select the parameters from the
proposed list.

5 Click Create parameter/attribute in workflow to create a workflow attribute to bind to the input
parameter that the user provides.

6 Give the parameter an appropriate name.

7 Select the input parameter type from the list of types by searching for an object type in the Filter box.

For example, if the user interaction requires the user to provide a virtual machine as an input
parameter, select VC:VirtualMachine.

8 Select Create workflow ATTRIBUTE with the same name to bind the input parameter that the user
provides to a new attribute in the workflow.

9 Leave the input parameter value set to Not set.

The user provides this value when they respond to the user interaction during the workflow run.

10 Click OK to close the Parameter information dialog box.

Chapter 1 Developing Workflows

VMware, Inc. 53

You defined the input parameters that the user provides during a user interaction.

What to do next

Define the exception behavior if the user interaction encounters an error. See “Define User Interaction
Exception Behavior,” on page 54.

Define User Interaction Exception Behavior
If a user does not provide the input parameters within the timeout period, the user interaction returns an
exception. You can define the exception behavior in a scripted function.

If you do not define the action for the workflow to take if the user interaction times out, the workflow ends
in the Failed state. Defining the exception behavior is a good workflow development practice.

Prerequisites

n Add a user interaction element to the workflow schema.

n Set the security.group and timer.date attributes for the user interaction.

n Define the external input parameters of the user interaction.

Procedure

1 Click the Edit icon () of the User Interaction element in the workflow schema.

2 Click the Exception tab.

3 Click Not set for the output exception binding.

4 Click Create parameter/attribute in workflow to create an exception attribute to which to bind the user
interaction.

The Parameter information dialog box opens.

5 Create an errorCode attribute.

An errorCode attribute has the following default properties:

n Name: errorCode

n Type: string

n Create: Create workflow ATTRIBUTE with the same name

n Value: Type an appropriate error message.

6 Click OK to close the Parameter information dialog box.

7 Drag a scriptable task element over the user interaction element in the workflow schema.

A red dashed arrow, which represents the exception link, appears between the two elements. The
scriptable task element binds automatically to the errorCode attribute from the user interaction.

8 Double-click the scriptable task element and provide an appropriate name.

For example, Log timeout.

9 In the Scripting tab of the scriptable task element, write a JavaScript function to handle the exception.

For example, to record the timeout in the Orchestrator log, write the following function:

System.log("No response from user. Timed out.");

Developing with VMware vCenter Orchestrator

54 VMware, Inc.

10 Link and bind the scriptable task element that handles exceptions to the element that follows it in the
workflow.

For example, link and bind the scriptable task element to a Throw exception element to end the
workflow with an error.

You defined the exception behavior if the user interaction times out.

What to do next

Create the dialog box in which users provide input parameters. See “Create the Input Parameters Dialog
Box for the User Interaction,” on page 55.

Create the Input Parameters Dialog Box for the User Interaction
Users provide input parameters during a workflow run in an input parameters dialog box, in the same way
that they provide input parameters when a workflow first starts.

You create the layout of the dialog box in the Presentation tab of the user interaction element, not in the
Presentation tab for the whole workflow. The Presentation tab of the whole workflow creates the layout of
the input parameters dialog box that appears when you start a workflow. The Presentation tab of the user
interaction element creates the layout of the input parameters dialog box that opens when a workflow
arrives at a user interaction element during its run.

Prerequisites

n Add a user interaction element to the workflow schema.

n Set the security.group and timer.date attributes for the user interaction.

n Define the external input parameters of the user interaction.

n Define the exception behavior.

Procedure

1 Click the Edit icon () of the User Interaction element in the workflow schema.

2 Click the Presentation tab of the user interaction element.

The Presentation tab shows the external input parameters that you created for the user interaction.

3 (Optional) Right-click the Presentation node in the Presentation tab and select Create new step.

Steps allow you to create sections in the dialog box, with descriptions and headings under which you
can organize the input parameters.

4 (Optional) Right-click the Presentation node in the Presentation tab and select Create display group.

Display groups allow you to sort the order in which input parameters appear in the steps, and allow
you to add sub-headers and instructions to the dialog box.

5 Click an input parameter in the list and add a description of the input parameter in the General tab for
that parameter.

The description text that you type appears as a label in the input parameters dialog box to inform the
user of the information they must provide when they respond to the user interaction.

6 Define input parameter properties.

Input parameter properties allow you to qualify the input parameter values that users can provide, and
to determine parameter values dynamically by using OGNL expressions.

7 Click Save and close to close the workflow editor.

Chapter 1 Developing Workflows

VMware, Inc. 55

You created the input parameters dialog box in which users provide input parameters to respond to a user
interaction during a workflow run.

What to do next

For information about creating the presentation steps and groups and setting input parameter properties,
see “Creating the Input Parameters Dialog Box In the Presentation Tab,” on page 43.

Respond to a Request for a User Interaction
Workflows that require interactions from users during their run suspend their run either until the user
provides the required information or until the workflow times out.

Workflows that require user interactions define which users can provide the required information and
direct the requests for interaction.

Prerequisites

Verify that at least one workflow is in the Waiting for User Interaction state.

Procedure

1 From the drop-down menu in the Orchestrator client, select Run.

2 Click the My Orchestrator view in the Orchestrator client.

3 Click the Waiting for Input tab.

The Waiting for Input tab lists the workflows that are waiting for user inputs from you or from
members of your user group that have permission.

4 Double-click a workflow that is waiting for input.

The workflow token that is waiting for input appears in the Workflows hierarchical list with the

following symbol: .

5 Right-click the workflow token and select Answer.

6 Follow the instructions in the input parameters dialog box to provide the information that the workflow
requires.

You provided information to a workflow that was waiting for user input during its run.

Calling Workflows Within Workflows
Workflows can call on other workflows during their run. A workflow can start another workflow either
because it requires the result of the other workflow as an input parameter for its own run, or it can start a
workflow and let it continue its own run independently. Workflows can also start a workflow at a given
time in the future, or start multiple workflows simultaneously.

n Workflow Elements that Call Workflows on page 57
There are four ways to call other workflows from within a workflow. Each way of calling a workflow
or workflows is represented by a different workflow schema element.

n Call a Workflow Synchronously on page 59
Calling a workflow synchronously runs the called workflow as a part of the run of the calling
workflow. The calling workflow can use the called workflow's output parameters as input parameters
when it runs its subsequent schema elements.

Developing with VMware vCenter Orchestrator

56 VMware, Inc.

n Call a Workflow Asynchronously on page 60
Calling a workflow asynchronously runs the called workflow independently of the calling workflow.
The calling workflow continues its run without waiting for the called workflow to complete.

n Schedule a Workflow on page 61
You can call a workflow from a workflow and schedule it to start at a later time and date.

n Prerequisites for Calling a Remote Workflow from Within Another Workflow on page 61
If the workflow that you develop calls another workflow that resides on a remote Orchestrator server,
certain prerequisites must be fulfilled so that the remote workflow can run successfully.

n Call Several Workflows Simultaneously on page 62
Calling several workflows simultaneously runs the called workflows synchronously as part of the run
of the calling workflow. The calling workflow waits for all of the called workflows to complete before
it continues. The calling workflow can use the results of the called workflows as input parameters
when it runs its subsequent schema elements.

Workflow Elements that Call Workflows
There are four ways to call other workflows from within a workflow. Each way of calling a workflow or
workflows is represented by a different workflow schema element.

Synchronous
Workflows

A workflow can start another workflow synchronously. The called workflow
runs as an integral part of the calling workflow's run, and runs in the same
memory space as the calling workflow. The calling workflow starts another
workflow, then waits until the end of the called workflow's run before it
starts running the next element in its schema. Usually, you call a workflow
synchronously because the calling workflow requires the output of the called
workflow as an input parameter for a subsequent schema element. For
example, a workflow can call the Start virtual machine and wait workflow to
start a virtual machine, and then obtain the IP address of this virtual machine
to pass to another element or to a user by email.

Asynchronous
Workflows

A workflow can start a workflow asynchronously. The calling workflow
starts another workflow, but the calling workflow immediately continues
running the next element in its schema, without waiting for the result of the
called workflow. The called workflows run with input parameters that the
calling workflow defines, but the lifecycle of the called workflow is
independent from the lifecycle of the calling workflow. Asynchronous
workflows allow you to create chains of workflows that pass input
parameters from one workflow to the next. For example, a workflow can
create various objects during its run. The workflow can then start
asynchronous workflows that use these objects as input parameters in their
own runs. When the original workflow has started all the required
workflows and run its remaining elements, it ends. However, the
asynchronous workflows it started continue their runs independently of the
workflow that started them.

To make the calling workflow wait for the result of the called workflow,
either use a nested workflow or create a scriptable task that retrieves the
state of the workflow token of the called workflow and then retrieves the
result of the workflow when it completes.

Chapter 1 Developing Workflows

VMware, Inc. 57

Scheduled Workflows A workflow can call a workflow but defer starting that workflow until a later
time and date. The calling workflow then continues its run until it ends.
Calling a scheduled workflow creates a task to start that workflow at the
given time and date. When the calling workflow has run, you can view the
scheduled workflow in the Scheduler and My Orchestrator views in the
Orchestrator client.

Scheduled workflows only run once. You can schedule a workflow to run
recurrently by calling the Workflow.scheduleRecurrently method in a
scriptable task element in a synchronous workflow.

Nested Workflows A workflow can start several workflows simultaneously by nesting several
workflows in a single schema element. All the workflows listed in the nested
workflow element start simultaneously when the calling workflow arrives at
the nested workflows element in its schema. Significantly, each nested
workflow starts in a different memory space from the memory space of the
calling workflow. The calling workflow waits until all the nested workflows
have completed their runs before it starts running the next element in its
schema. The calling workflow can thus use the results of the nested
workflows as input parameters when it runs its remaining elements.

Propagate Workflow Changes to other Workflows
If you call a workflow from another workflow, Orchestrator imports the input parameters of the child
workflow in the parent workflow at the moment you add the workflow element to the schema.

If you modify the child workflow after you have added it to another workflow, the parent workflow calls on
the new version of the child workflow, but does not import any new input parameters. To prevent changes
to workflows affecting the behavior of other workflows that call them, Orchestrator does not propagate the
new input parameters automatically to the calling workflows.

To propagate parameters from one workflow to other workflows that call it, you must find the workflows
that call the workflow, and synchronize the workflows manually.

Prerequisites

Verify that you have a workflow that another workflow or workflows call.

Procedure

1 Modify and save a workflow that other workflows call.

2 Close the workflow editor.

3 Navigate to the workflow you changed in the hierarchical list in the Workflows view in the
Orchestrator client.

4 Right-click the workflow, and select References > Find Elements that Use this Element.

A list of workflows that call this workflow appears.

5 Double-click a workflow in the list to highlight it in the Workflows view in the Orchestrator client.

6 Right-click the workflow, and select Edit.

The workflow editor opens.

7 Click the Schema tab in the workflow editor.

8 Right-click the workflow element for the changed workflow from the workflow schema and select
Synchronize > Synchronize Parameters.

9 Select Continue in the confirmation dialog box.

Developing with VMware vCenter Orchestrator

58 VMware, Inc.

10 Save and close the workflow editor.

11 Repeat Step 5 to Step 10 for all the workflows that use the modified workflow.

You propagated a changed workflow to other workflows that call it.

Propagate the Input Parameters and Presentation of a Child Workflow to the
Parent Workflow
If you develop a workflow that calls other workflows, you can propagate the input parameters and the
presentation of the child workflows to the parent workflow.

Procedure

1 From the drop-down menu in the Orchestrator client, select Run.

2 Right-click the workflow that you want to modify and select Edit.

The workflow editor opens.

3 Select the Schema tab.

4 Right-click the element of the child workflow whose input parameters and presentation you want to
propagate to the parent workflow and select Synchronize > Synchronize Presentation.

5 In the confirmation dialog, select OK.

6 (Optional) Repeat Step 4 and Step 5 for all child workflows whose input parameters and presentation
you want to propagate to the parent workflow.

The input parameters of the child workflows are added to the input parameters of the parent workflow. The
presentation of the parent workflow is extended with the presentations of the child workflows.

Call a Workflow Synchronously
Calling a workflow synchronously runs the called workflow as a part of the run of the calling workflow. The
calling workflow can use the called workflow's output parameters as input parameters when it runs its
subsequent schema elements.

You call workflows synchronously from another workflow by using the Workflow element.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag a Workflow element from the Generic menu to the appropriate position in the workflow schema.

The Choose workflow selection dialog box appears.

2 Search for ands select the workflow you want and click OK.

If the search returns a partial result, narrow your search criterion or increase the number of search
results from the Tools > User preferences menu in the client.

3 Click the Workflow element to show its properties tabs in the bottom half of the Schema tab.

4 Click the Edit icon () of the Workflow element in the workflow schema.

5 Bind the required input parameters to the workflow in the IN tab of the workflow schema element.

Chapter 1 Developing Workflows

VMware, Inc. 59

6 Bind the required output parameters to the workflow in the OUT tab of the workflow schema
element's.

7 Define the exception behavior of the workflow in the Exceptions tab.

8 Click Close.

9 Click Save at the bottom of the workflow editor.

You called a workflow synchronously from another workflow. When the workflow reaches the synchronous
workflow during its run, the synchronous workflow starts, and the initial workflow waits for it to complete
before continuing its run.

What to do next

You can call a workflow asynchronously from a workflow.

Call a Workflow Asynchronously
Calling a workflow asynchronously runs the called workflow independently of the calling workflow. The
calling workflow continues its run without waiting for the called workflow to complete.

You call workflows asynchronously from another workflow by using the Asynchronous Workflow
element.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag an Asynchronous Workflow element from the Generic menu to the appropriate position in the
workflow schema.

The Choose workflow selection dialog box appears.

2 Search for and select the desired workflow from the list and click OK.

3 Click the Edit icon () of the Asynchronous Workflow element in the workflow schema.

4 Bind the required input parameters to the workflow in IN tab of the asynchronous workflow element.

5 Bind the required output parameter in the OUT tab of the asynchronous workflow element.

You can bind the output parameter either to the called workflow, or to that workflow's result.

n Bind to the called workflow to return that workflow as an output parameter

n Bind to the workflow token of the called workflow to return the result of running the called
workflow.

6 Define the exception behavior of the asynchronous workflow element in the Exceptions tab.

7 Click Close.

8 Click Save at the bottom of the workflow editor.

You called a workflow asynchronously from another workflow. When the workflow reaches the
asynchronous workflow during its run, the asynchronous workflow starts, and the initial workflow
continues its run without waiting for the asynchronous workflow to finish.

What to do next

You can schedule a workflow to start at a later time and date.

Developing with VMware vCenter Orchestrator

60 VMware, Inc.

Schedule a Workflow
You can call a workflow from a workflow and schedule it to start at a later time and date.

You schedule workflows in another workflow by using the Schedule Workflow element.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag a Schedule Workflow element from the Generic menu to the appropriate position in the
workflow schema.

2 Search for the workflow to call by typing part of its name in the text box.

3 Select the workflow from the list and click OK.

4 Click the Edit icon () of the Schedule Workflow element in the workflow schema.

5 Click the IN property tab.

A parameter named workflowScheduleDate appears in the list of properties to define, together with the
input parameters of the calling workflow.

6 Click Not set for the workflowScheduleDate parameter to set the parameter.

7 Click Create parameter/attribute in workflow to create the parameter and set the parameter value.

8 Click Not set for Value to set the parameter value.

9 Use the calendar that appears to set the date and time to start the scheduled workflow and click OK.

10 Bind the remaining input parameters to the scheduled workflow in the IN tab of the scheduled
workflow element.

11 Bind the required output parameters to the Task object in the OUT tab of the scheduled workflow
element.

12 Define the exception behavior of the scheduled workflow element in the Exceptions tab.

13 Click Close.

14 Click Save at the bottom of the workflow editor.

You scheduled a workflow to start at a given time and date from another workflow.

What to do next

You can call multiple workflows simultaneously from a workflow.

Prerequisites for Calling a Remote Workflow from Within Another Workflow
If the workflow that you develop calls another workflow that resides on a remote Orchestrator server,
certain prerequisites must be fulfilled so that the remote workflow can run successfully.

n All input parameters of the remote workflow must be resolvable on the remote Orchestrator server.

n All output parameters of the remote workflow must be resolvable on the local Orchestrator server.

Chapter 1 Developing Workflows

VMware, Inc. 61

To ensure that the parameters of the remote workflow are resolvable, the inventory objects that the
workflow uses must be available both in the remote and the local Orchestrator servers. In case the remote
workflow uses objects from a plug-in, the same plug-in must be available on both Orchestrator servers. The
inventories of the remote plug-in and the local plug-in must be identical. In case the remote workflow uses
system objects in Orchestrator, like workflows and actions, the same workflows and actions must exist in
the inventories of the remote and the local Orchestrator servers.

For example, suppose that you insert the Rename virtual machine workflow in a Nested Workflow element
in the Test workflow that you develop. You want to run the Rename virtual machine workflow in a remote
Orchestrator server. When you run the Test workflow, the Rename virtual machine workflow is called
within the run of the Test workflow. You specify a virtual machine to rename from the inventory of the local
Orchestrator server. Because the Rename virtual machine workflow runs on the remote Orchestrator server,
the same virtual machine must be available in the inventory of that server. Otherwise, the Rename virtual
machine workflow cannot resolve its vm input parameter. Therefore, the vCenter Server plug-in on the local
and the remote Orchestrator servers must be connected to the same vCenter Server instance.

Call Several Workflows Simultaneously
Calling several workflows simultaneously runs the called workflows synchronously as part of the run of the
calling workflow. The calling workflow waits for all of the called workflows to complete before it continues.
The calling workflow can use the results of the called workflows as input parameters when it runs its
subsequent schema elements.

You call several workflows simultaneously from another workflow by using the Nested Workflows
element. You can use nested workflows to run workflows with user credentials that are different from the
credentials of the user of the calling workflow.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag a Nested Workflows element from the Action & Workflow menu to the appropriate position in
the workflow schema.

The Choose workflow selection dialog box appears.

2 Search for and select a workflow to start and click OK.

3 Click the Edit icon () of the Nested Workflows element in the workflow schema.

4 Click the Workflows tab.

The workflow you selected in Step 2 appears in the tab.

5 Set the IN and OUT bindings for this workflow in the IN and OUT tabs in the right panel of the
Workflows schema element properties tab.

6 Click the Connection Info tab in the right panel of the Workflows schema element properties tab.

The Connection Info tab allows you to access workflows stored in a different server to the local one,
using the appropriate credentials.

7 To access workflows on a remote server, select Remote and click Not set to provide a host name or IP
address for the remote server.

NOTE You can use the vCenter Orchestrator Multi-Node plug-in to call workflows on a remote server.

Developing with VMware vCenter Orchestrator

62 VMware, Inc.

8 Define the credentials with which to access the remote server.

n Select Inherit to use the same credentials as the user who runs the calling workflow.

n Select Dynamic and click Not set to select a set of dynamic credentials that a parameter of the
credentials type defines elsewhere in the workflow.

n Select Static and click Not set to enter the credentials directly.

9 Click the Add Workflow button in the Workflows tab to select more workflows to add to the nested
workflow element.

10 Repeat Step 2 to Step 8 to define the settings for each of the workflows you add.

11 Click the nested workflow element in the workflow schema.

The number of workflows nested in the element appears as a numeral on the nested workflows
element.

You called several workflows simultaneously from a workflow.

What to do next

You can define long-running workflows.

Running a Workflow on a Selection of Objects
You can automate repetitive tasks by running a workflow on a selection of objects. For example, you can
create a workflow that takes a snapshot of all the virtual machines in a virtual machine folder, or you can
create a workflow that powers off all the virtual machines on a given host.

You can use one of the following methods to run a workflow on a selection of objects.

n Run the Library > vCenter > Batch > Run a workflow on a selection of objects workflow.

n Create a workflow that calls the Library > Orchestrator > Start workflows in a series or Start
workflows in parallel workflows.

n Create a workflow that obtains an array of objects and runs a workflow on each object in the array in a
loop of workflow elements.

n Run a workflow from JavaScript by calling the Workflow.execute() method in a For loop in a scripted
element in a workflow.

Which method you choose to run a workflow on a selection of objects depends on the workflow to run and
can affect the performance of the workflow. For example, running the Run a workflow on a selection of
objects workflow is the simplest way to run a workflow on multiple objects and requires no workflow
development, but it can only run workflows that take a single input parameter.

Creating a workflow that calls the Start workflows in a series or Start workflows in parallel workflows
allows you to run on multiple objects workflows that take more than one input parameter. The calling
workflow must create a properties array to pass the input parameters to the Start workflows in a series or
Start workflows in parallel workflow. These workflows are only for use in other workflows. Do not run
them directly.

Running a workflow in a For loop in a scripted element is faster than running a workflow in a loop of
workflow elements, but it is less flexible and limits the potential for reuse. Most importantly, running a
workflow in a scripted loop loses the checkpointing that Orchestrator performs when it starts each element
in a workflow run. As a consequence, if the Orchestrator server stops while the scripted loop is running,
when the server restarts, the workflow will resume at the beginning of the scripted element, repeating the
whole loop. If the Orchestrator server stops while running a workflow with a loop of workflow elements,
the workflow will resume at the specific element in the loop that was running when the server stopped.

For more information about the Batch workflows, see Using VMware vCenter Orchestrator Plug-Ins.

Chapter 1 Developing Workflows

VMware, Inc. 63

How to create a workflow that runs a workflow on an array of objects in a loop of workflow elements is
demonstrated in “Develop a Complex Workflow,” on page 104.

How to run a workflow in a scripted For loop is demonstrated in “Workflow Scripting Examples,” on
page 138.

Implement the Start Workflows in a Series and Start Workflows in Parallel
Workflows

You can use the Start workflows in a series and Start workflows in parallel workflows to run a workflow on
a selection of objects.

You cannot run the Start workflows in a series and Start workflows in parallel workflows directly. You must
include them in another workflow that you create. To use the Start workflows in a series and Start
workflows in parallel workflows to run a workflow on a selection of objects, you must obtain the objects on
which to run the workflow. You pass these objects and any other input parameters that the workflow
requires to the workflow as an array of properties. The Start workflows in a series and Start workflows in
parallel workflows emit the results of running the workflow on the selection of objects as an array of
WorkflowToken objects.

You implement the Start workflows in a series and Start workflows in parallel workflows in the same way.
The Start workflows in a series workflow runs the workflow on each object sequentially. The Start
workflows in parallel workflow runs the workflow on all the objects simultaneously.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 In the workflow schema, add a scriptable task element or an action to obtain a list of objects on which to
run the workflow.

For example, to run a workflow on all the virtual machines in a virtual machine folder, you can add the
getAllVirtualMachinesByFolder action to the workflow.

2 Link the scripted element or action and bind the input and output of the scripted element or action to
workflow inputs or attributes.

For example, you can bind the vmFolder input of the getAllVirtualMachinesByFolder action to a
workflow input parameter and the actionResult output to a workflow attribute in the calling
workflow.

3 Add a scriptable task element to cast the list of objects into a properties array.

For example, if the objects on which to run the workflow are an array of virtual machines, allVMs,
returned by the actionResult output of the getAllVirtualMachinesByFolder action, you can write the
following script to cast the objects into a properties array.

propsArray = new Array();

for each (var vm in allVMs) {

 var prop = new Properties();

 prop.put("vm", vm);

 propsArray.push(prop);

}

4 Bind the inputs and outputs of the scriptable task element to workflow attributes.

In the example scriptable task element in Step 3, you bind the input to the allVMs array of virtual
machines and you create the propsArray output attribute as an array of Properties objects.

5 Add a workflow element to the workflow schema.

Developing with VMware vCenter Orchestrator

64 VMware, Inc.

6 Select either of the Start workflows in a series or Start workflows in parallel workflows and link the
workflow element to the other elements.

7 Bind the wf input of the Start workflows in a series or Start workflows in parallel workflow to the
workflow to run on the objects.

For example, to remove any snapshots of all the virtual machines returned by the
getAllVirtualMachinesByFolder action, select the Remove all snapshots workflow.

8 Bind the parameters input of the Start workflows in a series or Start workflows in parallel workflow to
the array of Properties objects that contains the objects on which to run the workflow.

For example, bind the parameters input to the propsArray attribute defined in Step 4.

9 (Optional) Bind the workflowTokens output of the Start workflows in a series or Start workflows in
parallel workflow to an attribute in the workflow.

10 (Optional) Continue adding more elements that use the results of running the Start workflows in a
series or Start workflows in parallel workflow.

You created a workflow that uses either of the Start workflows in a series or Start workflows in parallel
workflows to run a workflow on a selection of objects.

Developing Long-Running Workflows
A workflow in a waiting state consumes system resources because it constantly polls the object from which
it requires a response. If you know that a workflow will potentially wait for a long time before it receives the
response it requires, you can add long-running workflow elements to the workflow.

Every running workflow consumes a system thread. When a workflow reaches a long-running workflow
element, the long-running workflow element sets the workflow into a passive state. The long-running
workflow element then passes the workflow information to a single thread that polls the system for all long-
running workflow elements running in the server. Rather than each long-running workflow element
constantly attempting to retrieve information from the system, long-running workflow elements remain
passive for a set duration, while the long-running workflow thread polls the system on its behalf.

You set the duration of the wait in one of the following ways:

n Set a timer, encapsulated in a Date object, that suspends the workflow until a certain time and date. You
implement long-running workflow elements that are based on a timer by including a Waiting Timer
element in the schema.

n Define a trigger event, encapsulated in a Trigger object, that restarts the workflow after the trigger
event occurs. You implement long-running workflow elements that are based on a trigger by adding a
Waiting Event element or a User Interaction element in the schema.

Set a Relative Time and Date for Timer-Based Workflows
You can set the timer.date attribute of a Waiting Timer element to a relative time and date by binding it to a
Date object. You define the Date object in a scripted function.

When the time on the given date arrives, the long-running workflow that is based on a timer reactivates and
continues its run. For example, you can set the workflow to reactivate at midday on February 12.
Alternatively, you can create a workflow element that calculates and generates a relative Date object
according to a function that you define. For example, you can create a relative Date object that adds 24 hours
to the current time.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

Chapter 1 Developing Workflows

VMware, Inc. 65

n Add some elements to the workflow schema.

Procedure

1 Drag a Scriptable task element from the Generic menu to the schema of a workflow, before the element
that requires the relative Date object for its timeout.date attribute.

2 Click the Edit icon () of the Scriptable task element in the workflow schema.

3 Provide a name and description for the scripted workflow element in the Info properties tab.

4 Click the OUT properties tab, and click the Bind to workflow parameter/attribute icon ().

5 Click Create parameter/attribute in workflow to create a workflow attribute.

a Name the attribute timerDate.

b Select Date from the list of attribute types.

c Select Create workflow ATTRIBUTE with the same name.

d Leave the attribute value set to Not set, because a scripted function will provide this value.

e Click OK.

6 Click the Scripting tab for the scripted workflow element.

7 Define a function to calculate and generate a Date object named timerDate in the scripting pad in the
Scripting tab.

For example, you can create a Date object by implementing the following JavaScript function, in which
the timeout period is a relative delay in milliseconds.

timerDate = new Date();

System.log("Current date : '" + timerDate + "'");

timerDate.setTime(timerDate.getTime() + (86400 * 1000));

System.log("Timer will expire at '" + timerDate + "'");

The preceding example JavaScript function defines a Date object that obtains the current date and time
by using the getTime method and adds 86,400,000 milliseconds, or 24 hours. The Scriptable Task
element generates this value as its output parameter.

8 Click Close.

9 Click Save.

You created a function that calculates and generates a Date object. A Waiting Timer element can receive this
Date object as an input parameter, to suspend a long-running workflow until the date encapsulated in this
object. When the workflow arrives at the Waiting Timer element, it suspends its run and waits for 24 hours
before continuing.

What to do next

You must add a Waiting Timer element to a workflow to implement a long-running workflow that is based
on a timer.

Create a Timer-Based Long-Running Workflow
If you know a workflow will have to wait for a response from an outside source for a predictable time, you
can implement it as a timer-based long-running workflow. A timer-based long-running workflow waits
until a given time and date before resuming.

You implement a workflow as a timer-based long-running workflow by using the Waiting Timer element.

Developing with VMware vCenter Orchestrator

66 VMware, Inc.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag a Waiting Timer element from the Generic menu to the position in the workflow schema at which
to suspend the workflow's run.

If you implement a scriptable task to calculate the time and date, this element must precede the Waiting
Timer element.

2 Click the Edit icon () of the Waiting Timer element in the workflow schema.

3 Provide a description of the reason for implementing the timer in the Info properties tab.

4 Click the Attributes properties tab.

The timer.date parameter appears in the list of attributes.

5 Click the timer.date parameter's Not set button to bind the parameter to an appropriate Date object.

The Waiting Timer selection dialog box opens, presenting a list of possible bindings.

n Select a predefined Date object from the proposed list, for example one defined by a Scriptable
Task element elsewhere in the workflow.

n Alternatively, create a Date object that sets a specific date and time for the workflow to await.

6 (Optional) Create a Date object that sets a specific date and time that the workflow awaits.

a Click Create parameter/attribute in workflow in the Waiting Timer selection dialog box.

The Parameter information dialog box appears.

b Give the parameter an appropriate name.

c Leave the type set to Date.

d Click Create workflow ATTRIBUTE with the same name.

e Click the Value property's Not set button to set the parameter value.

A calendar appears.

f Use the calendar to set a date and time at which to restart workflow.

g Click OK.

7 Click Close.

8 Click Save at the bottom of the workflow editor.

You defined a timer that suspends a timer-based long-running workflow until a set time and date.

What to do next

You can create a long-running workflow that waits for a trigger event before continuing.

Chapter 1 Developing Workflows

VMware, Inc. 67

Create a Trigger Object
Trigger objects monitor event triggers that plug-ins define. For example, the vCenter Server plug-in defines
these events as Task objects. When the task ends, the trigger sends a message to a waiting trigger-based
long-running workflow element, to restart the workflow.

The time-consuming event for which a trigger-based long-running workflow waits must return a VC:Task
object. For example, the startVM action to start a virtual machine returns a VC:Task object, so that subsequent
elements in a workflow can monitor its progress. A trigger-based long-running workflow's trigger event
requires this VC:Task object as an input parameter.

You create a Trigger object in a JavaScript function in a Scriptable Task element. This Scriptable Task
element can be part of the trigger-based long-running workflow that waits for the trigger event.
Alternatively, it can be part of a different workflow that provides input parameters to the trigger-based
long-running workflow. The trigger function must implement the createEndOfTaskTrigger() method from
the Orchestrator API.

IMPORTANT You must define a timeout period for all triggers, otherwise the workflow can wait indefinitely.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

n In the workflow, declare a VC:Task object as an attribute or input parameter, such as a VC:Task object
from a workflow or workflow element that starts or clones a virtual machine.

Procedure

1 Drag a Scriptable Task element from the Generic menu into the schema of a workflow.

One of the elements that precedes the Scriptable Task must generate a VC:Task object as its output
parameter.

2 Click the Edit icon () of the Scriptable task element in the workflow schema.

3 Provide a name and description for the trigger in Info properties tab.

4 Click the IN properties tab.

5 Click the Bind to workflow parameter/attribute icon ().

The input parameter selection dialog box opens.

6 Select or create an input parameter of the type VC:Task.

This VC:Task object represents the time-consuming event that another workflow or element launches.

7 (Optional) Select or create an input parameter of the Number type to define a timeout period in
seconds.

8 Click the OUT properties tab.

9 Click the Bind to workflow parameter/attribute icon ().

The output parameter selection dialog box opens.

Developing with VMware vCenter Orchestrator

68 VMware, Inc.

10 Create an output parameter with the following properties.

a Create the Name property with the value trigger.

b Create the Type property with the value Trigger.

c Click Create ATTRIBUTE with same name to create the attribute.

d Leave the value as Not set.

11 Define any exception behavior in the Exceptions properties tab.

12 Define a function to generate a Trigger object in the Scripting tab.

For example, you could create a Trigger object by implementing the following JavaScript function.

trigger = task.createEndOfTaskTrigger(timeout);

The createEndOfTaskTrigger() method returns a Trigger object that monitors a VC:Task object named
task.

13 Click Close.

14 Click Save at the bottom of the workflow editor.

You defined a workflow element that creates a trigger event for a trigger-based long-running workflow. The
trigger element generates a Trigger object as its output parameter, to which a Waiting Event element can
bind.

What to do next

You must bind this trigger event to a Waiting Event element in a trigger-based long-running workflow.

Create a Trigger-Based Long-Running Workflow
If you know a workflow will have to wait for a response from an outside source during its run, but do not
know how long that wait will last, you can implement it as a trigger-based long-running workflow. A
trigger-based long-running workflow waits for a defined trigger event to occur before resuming.

You implement a workflow as a trigger-based long-running workflow by using the Waiting Event element.
When the trigger-based long-running workflow arrives at the Waiting Event element, it will suspend its run
and wait in a passive state until it receives a message from the trigger. During the waiting period, the
passive workflow does not consume a thread, but rather the long-running workflow element passes the
workflow information to the single thread that monitors all long-running workflows in the server.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

n Define a trigger event that is encapsulated in a Trigger object.

Procedure

1 Drag a Waiting Event element from the Generic menu to the position in the workflow schema at which
you want to suspend the workflow's run.

The scriptable task that declares the trigger must immediately precede the Waiting Event element.

2 Click the Edit icon () of the Waiting Event element in the workflow schema.

3 Provide a description of the reason for the wait in the Info properties tab.

Chapter 1 Developing Workflows

VMware, Inc. 69

4 Click the Attributes properties tab.

The trigger.ref parameter appears in the list of attributes.

5 Click the trigger.ref parameter's Not set link to bind the parameter to an appropriate Trigger object.

The Waiting Event selection dialog box opens, presenting a list of possible parameters to which to bind.

6 Select a predefined Trigger object from the proposed list.

This Trigger object represents a trigger event that another workflow or workflow element defines.

7 Define any exception behavior in the Exceptions properties tab.

8 Click Close.

9 Click Save at the bottom of the workflow editor.

You defined a workflow element that suspends a trigger-based long-running workflow, that waits for a
specific trigger event before restarting.

What to do next

You can run a workflow.

Configuration Elements
A configuration element is a list of attributes you can use to configure constants across a whole Orchestrator
server deployment.

All the workflows, actions, policies, and Web views running in a particular Orchestrator server can use the
attributes you set in a configuration element. Setting attributes in configuration elements lets you make the
same attribute values available to all the workflows, actions, policies, and Web views running in the
Orchestrator server.

If you create a package containing a workflow, action, policy, or Web view that uses an attribute from a
configuration element, Orchestrator automatically includes the configuration element in the package. If you
import a package containing a configuration element into another Orchestrator server, you can import the
configuration element attribute values as well. For example, if you create a workflow that requires attribute
values that depend on the Orchestrator server on which it runs, setting those attributes in a configuration
element lets you to export that workflow so that another Orchestrator server can use it. Configuration
elements therefore allow you to exchange workflows, actions, policies, and Web views between servers
more easily.

NOTE You cannot import values of a configuration element attribute from a configuration element exported
from Orchestrator 5.1 or earlier.

Create a Configuration Element
Configuration elements allow you to set common attributes across an Orchestrator server. All elements that
are running in the server can call on the attributes you set in a configuration element. Creating configuration
elements allows you to define common attributes once in the server, rather than individually in each
element.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Configurations view.

3 Right-click a folder in the hierarchical list of folders and select New folder to create a new folder.

4 Provide a name for the folder and click Ok.

Developing with VMware vCenter Orchestrator

70 VMware, Inc.

5 Right-click the folder you created and select New element.

6 Provide a name for the configuration element and click Ok.

The configuration element editor opens.

7 Increment the version number by clicking the version digits in the General tab and providing a version
comment.

8 Provide a description of the configuration element in the Description text box in the General tab.

9 Click the Attributes tab.

10 Click the Add attribute icon () to create a new attribute.

11 Click the attribute values under Name, Type, Value, and Description to set the attribute name, type,
value, and description.

12 Click the Permissions tab.

13 Click the Add access rights icon () to grant permission to access this configuration element to a
group of users.

14 Search for a user group in the Filter text box and select the relevant user group from the proposed list.

15 Check the appropriate check boxes to set the access rights for the selected user group.

You can set the following permissions on the configuration element.

Permission Description

View Users can view the configuration element, but cannot view the schemas or
scripting.

Inspect Users can view the configuration element, including the schemas and
scripting.

Admin Users can set permissions on the elements in the configuration element
and have all other permissions.

Execute Users can run the elements in the configuration element.

Edit Users can edit the elements in the configuration element.

16 Click Select.

17 Click Save and close to exit the configuration element editor.

You defined a configuration element that sets common attributes across an Orchestrator server.

What to do next

You can use the configuration element to provide attributes to workflows or actions.

Workflow User Permissions
Orchestrator defines levels of permissions that you can apply to groups to allow or deny them access to
workflows.

View The user can view the elements in the workflow, but cannot view the schema
or scripting.

Inspect The user can view the elements in the workflow, including the schema and
scripting.

Execute The user can run the workflow.

Chapter 1 Developing Workflows

VMware, Inc. 71

Edit The user can edit the workflow.

Admin The user can set permissions on the workflow and has all other permissions.

The Admin permission includes the View, Inspect, Edit, and Execute permissions. All the permissions
require the View permission.

If you do not set any permissions on a workflow, the workflow inherits the permissions from the folder that
contains it. If you do set permissions on a workflow, those permissions override the permissions of the
folder that contains it, even if the permissions of the folder are more restrictive.

Set User Permissions on a Workflow
You set levels of permission on a workflow to limit the access that user groups can have to that workflow.

You can select the users and user groups for which to set permissions from the Orchestrator LDAP server.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Click the Permissions tab.

2 Click the Add access rights icon () to define permissions for a new user group.

3 Search for a user group.

The search results contain all the user groups from the Orchestrator LDAP server that match the search.

4 Select a user group and select the appropriate check boxes to set the level of permissions for this user
group.

To allow a user from this user group to view the workflow, inspect the schema and scripting, run and
edit the workflow, and change the permissions, you must select all check boxes.

5 Click Select.

The user group appears in the permissions list.

6 Click Save and close to exit the editor.

Validating Workflows
Orchestrator provides a workflow validation tool. Validating a workflow helps identify errors in the
workflow and checks that the data flows from one element to the next correctly.

When you validate a workflow, the validation tool creates a list of any errors or warnings. Clicking an error
in the list highlights the workflow element that contains the error.

If you run the validation tool in the workflow editor, the tool provides suggested quick fixes for the errors it
detects. Some quick fixes require you to provide additional information or input parameters. Other quick
fixes resolve the error for you.

Workflow validation checks the data bindings and connections between elements. Workflow validation
does not check the data processing that each element in the workflow performs. Consequently, a valid
workflow can run incorrectly and produce erroneous results if a function in a schema element is incorrect.

Developing with VMware vCenter Orchestrator

72 VMware, Inc.

By default, Orchestrator always performs workflow validation when you run a workflow. You can change
the default validation behavior in the Orchestrator client. See “Testing Workflows During Development,” on
page 15. For example, sometimes during workflow development you might want to run a workflow that
you know to be invalid, for testing purposes.

Validate a Workflow and Fix Validation Errors
You must validate a workflow before you can run it. You can validate workflows in either the Orchestrator
client or in the workflow editor. However, you can only fix validation errors if you have opened the
workflow for editing in the workflow editor.

Prerequisites

Verify that you have a complete workflow to validate, with schema elements linked and bindings defined.

Procedure

1 Click the Workflows view.

2 Navigate to a workflow in the Workflows hierarchical list.

3 (Optional) Right-click the workflow and select Validate workflow.

If the workflow is valid, a confirmation message appears. If the workflow is invalid, a list of errors
appears.

4 (Optional) Close the Workflow Validation dialog box.

5 Right-click the workflow and select Edit to open the workflow editor.

6 Click the Schema tab.

7 Click the Validate button in the Schema tab toolbar.

If the workflow is valid, a confirmation message appears. If the workflow is invalid, a list of errors
appears.

8 For an invalid workflow, click an error message.

The validation tool highlights the schema element in which the error occurs by adding a red icon to it.
Where possible, the validation tool displays a quick fix action.

n If you agree with the proposed quick fix action, click it to perform that action.

n If you disagree with the proposed quick fix action, close the Workflow Validation dialog box and
fix the schema element manually.

IMPORTANT Always check that the fix that Orchestrator proposes is appropriate.

For example, the proposed action might be to delete an unused attribute, when in fact that attribute
might not be bound correctly.

9 Repeat the preceding steps until you have eliminated all validation errors.

You validated a workflow and fixed the validation errors.

What to do next

You can run the workflow.

Chapter 1 Developing Workflows

VMware, Inc. 73

Debugging Workflows
Orchestrator provides a workflow debugging tool. You can debug a workflow to inspect the input and
output parameters and attributes at the start of any activity, replace parameter or attribute values during a
workflow run in edit mode, and resume a workflow from the last failed activity.

You can debug workflows from the standard workflow library and custom workflows. You can debug
custom workflows while developing them in the workflow editor.

Debug a Workflow
You can debug elements of a workflow by adding breakpoints to the elements in the workflow schema.

When a breakpoint is reached, you have several options to continue the debugging process. When you
debug an element from the workflow schema, you can view general information about the workflow run,
modify the workflow variables, and view log messages.

Prerequisites

Log in to the Orchestrator client as a user who can run workflows.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 Select a workflow from the workflow library and click the Schema tab.

4 To add breakpoints to the schema elements that you want to debug, right-click a workflow element and
select Toggle breakpoint.

You can enable or disable the toggled breakpoints.

5 Click the Debug workflow icon ().

If the workflow requires input parameters, you must provide them.

6 When the workflow run is paused after it reaches a breakpoint, select one of the available options.

Option Description

 Resume
Resumes the workflow run until another breakpoint is reached.

 Step into
Lets you step into a workflow element.
NOTE You cannot step into a nested workflow element when you debug a
workflow in the workflow editor.

 Step over
Steps over the current element in the schema and pauses the workflow run
on the next element.

 Step return
Exits the workflow element that you have stepped into.

7 (Optional) From the Breakpoints tab, modify the breakpoints.

You can enable, disable, or remove existing breakpoints.

8 (Optional) From the Variables tab, review the variables.

You can modify the values of some of the variables during the debugging process.

Developing with VMware vCenter Orchestrator

74 VMware, Inc.

Example Workflow Debugging
You can debug a workflow from the standard workflow library.

For example, if you provide an incorrect recipient address, you can correct the value when you debug the
Example interaction with email workflow.

Prerequisites

n Configure the Mail plug-in in the Orchestrator configuration interface.

n Log in to the Orchestrator client as a user who can run Mail workflows.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 In the workflows hierarchical list, open Library > Mail.

4 Select the Example interaction with email workflow and click the Schema tab.

5 Right-click the Email Send (Interaction) workflow element and select Toggle breakpoint.

6 Click the Debug workflow icon ().

7 Provide the required information.

a In the Destination address text box, type an incomplete recipient address.

For example, name@company.c.

b Select an LDAP group of users who are authorized to answer the query.

c Click Submit.

8 When the breakpoint is reached, click the Step into icon ().

9 On the Variables tab, verify the values.

10 In the toAddress text box, type the correct recipient address value.

For example, name@company.com.

11 Click the Resume icon () to continue the workflow run.

The workflow uses the value that you provided during the debugging process and continues the workflow
run.

Running Workflows
An Orchestrator workflow runs according to a logical flow of events.

When you run a workflow, each schema element in the workflow runs according to the following sequence.

1 The workflow binds the workflow token attributes and input parameters to the schema element's input
parameters.

2 The schema element runs.

3 The schema element's output parameters are copied to the workflow token attributes and workflow
output parameters.

4 The workflow token attributes and output parameters are stored in the database.

Chapter 1 Developing Workflows

VMware, Inc. 75

5 The next schema element starts running.

This sequence repeats for each schema element until the end of the workflow.

Workflow Token Check Points
When a workflow runs, each schema element is a check point. After each schema element runs, Orchestrator
stores workflow token attributes in the database, and the next schema element starts running. If the
workflow stops unexpectedly, the next time the Orchestrator server restarts, the currently active schema
element runs again, and the workflow continues from the start of the schema element that was running
when the interruption occurred. However, Orchestrator does not implement transaction management or a
rollback function.

End of Workflow
The workflow ends if the current active schema element is an end element. After the workflow reaches an
end element, other workflows or applications can use the workflow's output parameters.

Run a Workflow in the Workflow Editor
You can run a workflow while you are developing it.

Running a workflow in the workflow editor lets you verify that the workflow runs correctly without
interrupting the development process. You can view log messages that provide information about the
workflow run. If the workflow run returns unexpected results, you can modify the workflow and run it
again without closing the workflow editor.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Validate the workflow.

Procedure

1 Click the Schema tab.

2 Click Run.

3 (Optional) Review the messages in the Logs tab.

Run a Workflow
You can perform automated operations in vCenter Server by running workflows from the standard library
or workflows that you create.

For example, you can create a virtual machine by running the Create simple virtual machine workflow.

Prerequisites

Verify that you have configured the vCenter Server plug-in. For details, see Installing and Configuring
VMware vCenter Orchestrator.

Procedure

1 From the drop-down menu in the Orchestrator client, select Run or Design.

2 Click the Workflows view.

3 In the workflows hierarchical list, open Library > vCenter > Virtual machine management > Basic to
navigate to the Create simple virtual machine workflow.

Developing with VMware vCenter Orchestrator

76 VMware, Inc.

4 Right-click the Create simple virtual machine workflow and select Start workflow.

5 Provide the following information into the Start workflow input parameters dialog box to create a
virtual machine in a vCenter Server connected to Orchestrator.

Option Action

Virtual machine name Name the virtual machine orchestrator-test.

Virtual machine folder a Click Not set for the Virtual machine folder value.
b Select a virtual machine folder from the inventory.

The Select button is inactive until you select an object of the correct
type, in this case, VC:VmFolder.

Size of the new disk in GB Type an appropriate numeric value.

Memory size in MB Type an appropriate numeric value.

Number of virtual CPUs Select an appropriate number of CPUs from the Number of virtual CPUs
drop-down menu.

Virtual machine guest OS Click the Not Set link and select a guest operating system from the list.

Host on which to create the virtual
machine

Click Not set for the Host on which to create the virtual machine value
and navigate through the vCenter Server infrastructure hierarchy to a host
machine.

Resource pool Click Not set for the Resource pool value and navigate through the
vCenter Server infrastructure hierarchy to a resource pool.

The network to connect to Click Not set for the The network to connect to value and select a
network.
Press Enter in the Filter text box to see all the available networks.

Datastore in which to store the
virtual machine files

Click Not set for the Datastore in which to store the virtual machine
value and navigate through the vCenter Server infrastructure hierarchy to
a datastore.

6 Click Submit to run the workflow.

A workflow token appears under the Create simple virtual machine workflow, showing the workflow
running icon.

7 Click the workflow token to view the status of the workflow as it runs.

8 Click the Events tab in the workflow token view to follow the progress of the workflow token until it
completes.

9 Click the Inventory view.

10 Navigate through the vCenter Server infrastructure hierarchy to the resource pool you defined.

If the virtual machine does not appear in the list, click the refresh button to reload the inventory.

The orchestrator-test virtual machine is present in the resource pool.

11 (Optional) Right-click the orchestrator-test virtual machine in the Inventory view to see a contextual
list of the workflows that you can run on the orchestrator-test virtual machine.

The Create simple virtual machine workflow ran successfully.

What to do next

You can log in vSphere Client and manage the new virtual machine.

Chapter 1 Developing Workflows

VMware, Inc. 77

Resuming a Failed Workflow Run
If a workflow fails, Orchestrator provides an option to resume the workflow run from the last failed activity.

You can change the parameters of the workflow and attempt to resume it, or retain the parameters and
make changes to external components that affect the workflow run. For example, if a workflow run fails due
to a problem in a third-party system, you can make changes to the system and resume the workflow run
from the failed activity, without changing the workflow parameters and without repeating the successful
activities.

Set the Behavior for Resuming a Failed Workflow Run
You can set the behavior for resuming a failed run for each custom workflow. The default workflows in the
library use the default system setting for resuming a failed workflow run.

You can change the default system behavior by modifying a configuration file. See “Set Custom Properties
for Resuming Failed Workflow Runs,” on page 79.

Prerequisites

Verify that you have permissions to edit the workflow.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 Expand the workflows hierarchical list to navigate to the workflow for which you want to set the
behavior.

4 Right-click the workflow and select Edit.

The workflow editor opens.

5 On the General tab, select an option from the Resume from failed behavior drop-down menu.

Option Description

System default Follows the default behavior.

Enabled If a workflow run fails, a pop-up window displays an option to resume the
workflow run.

Disabled If a workflow run fails, it cannot be resumed.

6 Click Save and close.

Developing with VMware vCenter Orchestrator

78 VMware, Inc.

Set Custom Properties for Resuming Failed Workflow Runs
By default, Orchestrator is not set up to resume failed workflow runs. You can enable Orchestrator to
resume failed workflow runs and set a custom timeout period after which failed workflow runs cannot be
resumed.

Procedure

1 On the Orchestrator server system, navigate to the folder that contains configuration files.

Option Action

If you installed Orchestrator with
the vCenter Server installer

Go to
install_directory\VMware\Infrastructure\Orchestrator\app-
server\conf.

If you installed the standalone
version of Orchestrator

Go to install_directory\VMware\Orchestrator\app-server\conf.

If you downloaded and deployed
the virtual appliance

Go to /etc/vco/app-server/.

2 Open the vmo.properties configuration file in a text editor.

3 Set Orchestrator to resume failed workflow runs by editing the following line in the vmo.properties
file.

com.vmware.vco.engine.execute.resume-from-failed=true

4 Set a custom timeout period for resuming failed workflow runs by editing the following line in the
vmo.properties file.

com.vmware.vco.engine.execute.resume-from-failed.timeout-sec=<seconds>

The value you set overrides the default timeout setting of 86400 seconds.

5 Save the vmo.properties file.

6 Restart the Orchestrator server.

Resume a Failed Workflow Run
You can resume a workflow run from the last failed activity, if resuming a failed run is enabled for the
workflow.

When the option for resuming a failed workflow run is enabled, you can change the parameters of the
workflow and try to resume it by using the options in the pop-up window that appears after the workflow
fails. You can also retain the parameters and make changes to external components that affect the workflow
run. If you do not select an option, the workflow run times out and cannot be resumed. For modifying the
timeout period, see “Set Custom Properties for Resuming Failed Workflow Runs,” on page 79.

Procedure

1 From the drop-down menu in the pop-up window, select Resume and click Next.

If you select Cancel, the workflow run cannot be resumed later.

2 (Optional) Modify the workflow parameters.

3 Click Submit.

Chapter 1 Developing Workflows

VMware, Inc. 79

Generate Workflow Documentation
You can export documentation in PDF format about a workflow or a workflow folder that you select at any
time.

The exported document contains detailed information about the selected workflow or the workflows in the
folder. The information about each workflow includes name, version history of the workflow, attributes,
parameter presentation, workflow schema, and workflow actions. In addition, the documentation also
provides the source code for the used actions.

Procedure

1 From the drop-down menu in the Orchestrator client, select Run or Design.

2 Click the Workflows view.

3 Navigate to the workflow or workflow folder for which you want to generate documentation and right-
click it.

4 Select Generate documentation.

5 Browse to locate the folder in which to save the PDF file, provide a file name, and click Save.

The PDF file containing the information about the selected workflow, or the workflows in the folder, is
saved on your system.

Use Workflow Version History
You can use version history to revert a workflow to a previously saved state. You can revert the workflow
state to an earlier or a later workflow version. You can also compare the differences between the current
state of the workflow and a saved version of the workflow.

Orchestrator creates a new version history item for each workflow when you increase and save the
workflow version. Subsequent changes to the workflow do not change the current saved version. For
example, when you create a workflow version 1.0.0 and save it, the state of the workflow is stored in the
version history. If you make any changes to the workflow, you can save the workflow state in the
Orchestrator client, but you cannot apply the changes to workflow version 1.0.0. To store the changes in the
version history, you must create a subsequent workflow version and save it. The version history is kept in
the database along with the workflow itself.

When you delete a workflow, Orchestrator marks the element as deleted in the database without deleting
the version history of the element from the database. This way, you can restore deleted workflows. See
“Restore Deleted Workflows,” on page 81.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 Click the General tab in the workflow editor and click Show version history.

2 Select a workflow version and click Diff Against Current to compare the differences.

A window displays the differences between the current workflow version and the selected workflow
version.

Developing with VMware vCenter Orchestrator

80 VMware, Inc.

3 Select a workflow version and click Revert to restore the state of the workflow.

CAUTION If you have not saved the current workflow version, it is deleted from the version history and
you cannot revert back to the current version.

The workflow state is reverted to the state of the selected version.

Restore Deleted Workflows
You can restore workflows that have been deleted from the workflow library.

Procedure

1 From the drop-down menu in the Orchestrator client, select Run or Design.

2 Click the Workflows view.

3 Navigate to the workflow folder in which you want to restore deleted workflows.

4 Right-click the folder and select Restore deleted workflows.

5 Select the workflow or workflows that you want to restore and click Restore.

The restored workflows appear in the selected folder.

Develop a Simple Example Workflow
Developing a simple example workflow demonstrates the most common steps in the workflow
development process.

The example workflow that you are about to create starts an existing virtual machine in vCenter Server and
sends an email to the administrator to confirm that the virtual machine has started.

The example workflow performs the following tasks:

1 Prompts the user to select a virtual machine to start.

2 Prompts the user for an email address to which it can send notifications.

3 Checks whether the selected virtual machine is already powered on.

4 Sends a request to the vCenter Server instance to start the virtual machine.

5 Waits for vCenter Server to start the virtual machine, and returns an error if the virtual machine fails to
start or if starting the virtual machine takes too long.

6 Waits for vCenter Server to start VMware Tools on the virtual machine, and returns an error if the
virtual machine fails to start or if starting VMware Tools takes too long.

7 Verifies that the virtual machine is running.

8 Sends a notification to the provided email address, informing that the machine has started or that an
error occurred.

The ZIP file of Orchestrator examples available for download from the landing page of the Orchestrator
documentation contains a complete version of the Start VM and Send Email workflow.

The process for developing the example workflow consists of several tasks.

Prerequisites

Before you attempt to develop the simple example workflow, read “Key Concepts of Workflows,” on
page 13.

Chapter 1 Developing Workflows

VMware, Inc. 81

Procedure

1 Create the Simple Workflow Example on page 83
You must begin the workflow development process by creating the workflow in the Orchestrator
client.

2 Create the Schema of the Simple Workflow Example on page 84
You can create a workflow's schema in the workflow editor. The workflow schema contains the
elements that the workflow runs and determines the logical flow of the workflow.

3 (Optional) Create the Simple Workflow Example Zones on page 86
You can emphasize different zones in workflow by adding workflow notes of different colors.
Creating different workflow zones helps to make complicated workflow schema easier to read and
understand.

4 Define the Parameters of the Simple Workflow Example on page 87
In this phase of workflow development, you define the input parameters that the workflow requires to
run. For the example workflow, you need an input parameter for the virtual machine to power on, and
a parameter for the email address of the person to inform about the result of the operation. When
users run the workflow, they will be required to specify the virtual machine to power on and an email
address.

5 Define the Simple Workflow Example Decision Bindings on page 88
You bind a workflow's elements together in the Schema tab of the workflow editor. Decision bindings
define how decision elements compare the input parameters received to the decision statement, and
generate output parameters according to whether the input parameters match the decision statement.

6 Bind the Action Elements of the Simple Workflow Example on page 89
You can bind a workflow's elements together in the workflow editor. Bindings define how the action
elements process input parameters and generate output parameters.

7 Bind the Simple Workflow Example Scripted Task Elements on page 92
You bind a workflow's elements together in the Schema tab of the workflow editor. Bindings define
how the scripted task elements process input parameters and generate output parameters. You also
bind the scriptable task elements to their JavaScript functions.

8 Define the Simple Workflow Example Exception Bindings on page 99
You define exception bindings in the Schema tab in the workflow editor. Exception bindings define
how elements process errors.

9 Set the Read-Write Properties for Attributes of the Simple Workflow Example on page 100
You can define whether parameters and attributes are read-only constants or writeable variables. You
can also set limitations on the values that users can provide for input parameters.

10 Set the Simple Workflow Example Parameter Properties on page 100
You can set the parameter properties in the workflow editor. Setting the parameter properties affects
the behavior of the parameter, and places constraints on the possible values for that parameter.

11 Set the Layout of the Simple Workflow Example Input Parameters Dialog Box on page 102
You create the layout or presentation of the input parameters dialog box in the workflow editor. The
input parameters dialog box opens when users run a workflow that needs input parameters to run.

12 Validate and Run the Simple Workflow Example on page 103
After you create a workflow, you can validate it to discover any possible errors. If the workflow
contains no errors, you can run it.

Developing with VMware vCenter Orchestrator

82 VMware, Inc.

Create the Simple Workflow Example
You must begin the workflow development process by creating the workflow in the Orchestrator client.

Prerequisites

Verify that the following components are installed and configured on the system.

n vCenter Server, controlling some virtual machines, at least one of which is powered off

n Access to an SMTP server

n A valid email address

For information about how to install and configure vCenter Server, see the vSphere Installation and Setup
documentation. For information about how to configure Orchestrator to use an SMTP server, see Installing
and Configuring VMware vCenter Orchestrator.

To write a workflow, you must have an Orchestrator user account with at least View, Execute, Inspect, Edit,
and preferably Admin permissions on the server or on the workflow folder in which you are working.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 Right-click the root of the workflows list and select Add folder.

4 Name the new folder Workflow Examples and click OK.

5 Right-click the Workflow Examples folder and select New workflow.

6 Name the new workflow Start VM and Send Email and click OK.

The workflow editor opens.

7 In the General tab, click the version number digits to increment the version number.

Because this is the initial creation of the workflow, set the version to 0.0.1.

8 Click the Server restart behavior value in the General tab to set whether the workflow resumes after a
server restart.

9 Type a description of what the workflow does in the Description text box in the General tab.

For example, you can add the following description.

This workflow starts a virtual machine and sends a confirmation email to the Orchestrator

administrator.

10 Click Save at the bottom of the General tab.

You created a workflow called Start VM and Send Email, but you did not define its functions.

What to do next

Create the workflow's schema.

Chapter 1 Developing Workflows

VMware, Inc. 83

Create the Schema of the Simple Workflow Example
You can create a workflow's schema in the workflow editor. The workflow schema contains the elements
that the workflow runs and determines the logical flow of the workflow.

Prerequisites

Complete the following tasks.

n “Create the Simple Workflow Example,” on page 83.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Schema tab in the workflow editor.

2 From the Generic menu, drag a decision element to the arrow that links the Start element and the End
element in the schema.

3 Double-click the decision element and change its name to VM powered on?.

The decision element corresponds to a boolean function that checks whether the virtual machine is
already powered on.

4 From the Generic menu, drag an action element to the red arrow that links the decision element and an
End element.

The dialog box for action selection appears.

5 Type start in the Filter text box, select the startVM action from the filtered list of actions, and click
Select.

6 Drag the following action elements, one after the other, to the blue arrow that links the startVM action
element to an End element.

vim3WaitTaskEnd Suspends the workflow run and pings an ongoing vCenter Server task at
regular intervals, until that task is finished. The startVM action starts a
virtual machine and the vim3WaitTaskEnd action makes the workflow wait
while the virtual machine starts up. After the virtual machine starts, the
vim3WaitTaskEnd lets the workflow resume.

vim3WaitToolsStarted Suspends the workflow run and waits until VMware Tools starts on the
target virtual machine.

7 From the Generic menu, drag a scriptable task element to the blue arrow that links the
vim3WaitToolsStarted action element to an End element.

8 Double-click the scriptable task element and rename it to OK.

9 Drag another scriptable task element to the green arrow that links the VM powered on? decision element
to an End element , and name this scriptable task element Already started.

10 Modify the linking of the Already started scriptable task element.

a Drag the Already started scriptable task element to the left of the startVM action element.

b Delete the blue arrow that connects the Already started scriptable task element to an End element.

c Link the Already started scriptable task element to the vim3WaitToolsStarted action element with
a blue arrow.

Developing with VMware vCenter Orchestrator

84 VMware, Inc.

11 From the Generic menu, drag the following scriptable task elements into the schema.

n Drag a scriptable task element to the startVM action element and name the scriptable task element
Start VM Failed.

n Drag a scriptable task element to the vim3WaitTaskEnd action element and name the scriptable task
element Timeout 1.

n Drag a scriptable task element to the vim3WaitToolsStarted action element and name the scriptable
task element Timeout 2.

n Drag a scriptable task element to the blue arrow that links the OK scriptable task element to an End
element, name the new scriptable task element Send Email, and drag it to the right of the OK
scriptable task element.

n Link the Start VM Failed, Timeout 1, and Timeout 2 scriptable task elements to the Send Email
scriptable task element with blue arrows.

n Drag a scriptable task element to the Send Email scriptable task element, name the new scriptable
task element Send Email Failed, drag it to the right of the Timeout 2 scriptable task element, and
link it to the End element with a blue arrow.

12 Drag the End element to the right of the Send Email scriptable task element.

13 Click Save at the bottom of the Schema tab.

The following figure shows the layout of the Start VM and Send Email workflow schema elements.

Figure 1‑3. Linking the Elements of the Start VM and Send Email Example Workflow

Chapter 1 Developing Workflows

VMware, Inc. 85

What to do next

You can highlight different zones in the workflow.

(Optional) Create the Simple Workflow Example Zones
You can emphasize different zones in workflow by adding workflow notes of different colors. Creating
different workflow zones helps to make complicated workflow schema easier to read and understand.

Prerequisites

Complete the following tasks.

n “Create the Simple Workflow Example,” on page 83.

n “Create the Schema of the Simple Workflow Example,” on page 84.

n Open the workflow for editing in the workflow editor.

Procedure

1 Drag a workflow note element from the Generic menu into the workflow editor.

2 Position the workflow note over the Already started scriptable task element.

3 Drag the edges of the workflow note to resize it so that it surrounds the Already started scriptable task
element.

4 Double-click the text and add a description.

For example, Path if virtual machine is already powered on.

5 Press Ctrl+E to select the background color.

6 Repeat the preceding steps to highlight other zones in the workflow.

n Place a note over the vertical sequence of elements from the VM powered on? decision element to the
OK element. Add the description Start VM path.

n Place a note over the startVM failed, both Timeout scriptable task elements and the Send Email
Failed scriptable task element. Add the description Error handling.

n Place a note over the Send Email scriptable task element. Add the description Send email.

The following figure shows what the example workflow zones should look like.

Developing with VMware vCenter Orchestrator

86 VMware, Inc.

Figure 1‑4. Start VM and Send Email Example Workflow Zones

What to do next

You must define the workflow's attributes and input and output parameters.

Define the Parameters of the Simple Workflow Example
In this phase of workflow development, you define the input parameters that the workflow requires to run.
For the example workflow, you need an input parameter for the virtual machine to power on, and a
parameter for the email address of the person to inform about the result of the operation. When users run
the workflow, they will be required to specify the virtual machine to power on and an email address.

Prerequisites

Complete the following tasks.

n “Create the Simple Workflow Example,” on page 83.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Inputs tab in the workflow editor.

2 Right-click within the Inputs tab and select Add Parameter.

A parameter named arg_in_0 appears in the Inputs tab.

3 Click arg_in_0.

4 Type the name vm in the Choose Attribute Name dialog box and click OK.

Chapter 1 Developing Workflows

VMware, Inc. 87

5 Click the Type text box and type vc:virtualm in the search text box in the parameter type dialog box.

6 Select VC:VirtualMachine from the proposed list of parameter types and click Accept.

7 Add a description of the parameter in the Description text box.

For example, type The virtual machine to power on.

8 Repeat Step 2 through Step 7 to create a second input parameter, with the following values.

n Name: toAddress

n Type: String

n Description: The email address to send the result of this workflow to

9 Click Save at the bottom of the Inputs tab.

You defined the workflow's input parameters.

What to do next

Define the bindings between the element parameters.

Define the Simple Workflow Example Decision Bindings
You bind a workflow's elements together in the Schema tab of the workflow editor. Decision bindings
define how decision elements compare the input parameters received to the decision statement, and
generate output parameters according to whether the input parameters match the decision statement.

Prerequisites

Complete the following tasks.

n “Create the Simple Workflow Example,” on page 83.

n “Create the Schema of the Simple Workflow Example,” on page 84.

n “Define the Parameters of the Simple Workflow Example,” on page 87.

n Open the workflow for editing in the workflow editor.

Procedure

1 On the Schema tab, click the Edit icon () of the VM Powered On? decision element.

2 On the Decision tab, click the Not set (NULL) button and select vm as the decision element's input
parameter from the list of proposed parameters.

3 Select the state equals statement from the list of decision statements proposed in the drop-down menu.

A Not set button appears in the value text box, which presents you with a limited choice of possible
values.

4 Select poweredOn.

5 Click Save at the bottom of the workflow editor's Schema tab.

You have defined the true or false statement against which the decision element will compare the value of
the input parameter it receives.

What to do next

You must define the bindings for the other elements in the workflow.

Developing with VMware vCenter Orchestrator

88 VMware, Inc.

Bind the Action Elements of the Simple Workflow Example
You can bind a workflow's elements together in the workflow editor. Bindings define how the action
elements process input parameters and generate output parameters.

Prerequisites

Complete the following tasks.

n “Create the Simple Workflow Example,” on page 83.

n “Create the Schema of the Simple Workflow Example,” on page 84.

n “Define the Parameters of the Simple Workflow Example,” on page 87.

n “Define the Simple Workflow Example Decision Bindings,” on page 88.

n Open the workflow for editing in the workflow editor.

Procedure

1 On the Schema tab, click the Edit icon () of the startVM action element.

2 Set the following general information on the Info tab.

Option Action

Interaction Select No External interaction.

Business Status Select the check box and add the text Sending start VM.

Description Leave the text Start / Resume a VM. Return the start task.

3 Click the IN tab.

The IN tab displays the two possible input parameters available to the startVM action, vm and host.

Orchestrator automatically binds the vm parameter to vm[in-parameter] because the startVM action can
only take a VC:VirtualMachine as an input parameter. Orchestrator detects the vm parameter you
defined when you set the workflow input parameters and so binds it to the action automatically.

4 Set host to NULL.

This is an optional parameter, so you can set it to null. However, if you leave it set to Not set, the
workflow cannot validate.

5 Click the OUT tab.

The default output parameter that all actions generate, actionResult, appears.

6 For the actionResult parameter, click Not set.

7 Click Create parameter/attribute in workflow.

The Parameter information dialog box displays the values that you can set for this output parameter.
The output parameter type for the startVM action is a VC:Task object.

8 Name the parameter powerOnTask and provide a description.

For example, Contains the result of powering on a VM.

9 Click Create workflow ATTRIBUTE with the same name and click OK to exit the Parameter
information dialog box.

Chapter 1 Developing Workflows

VMware, Inc. 89

10 Repeat the preceding steps to bind the input and output parameters to the vim3WaitTaskEnd and
vim3WaitToolsStarted action elements.

“Simple Workflow Example Action Element Bindings,” on page 90 lists the bindings for the
vim3WaitTaskEnd and vim3WaitToolsStarted action elements.

11 Click Save at the bottom of the workflow editor's Schema tab.

The action elements' input and output parameters are bound to the appropriate parameter types and values.

What to do next

Bind the scriptable task elements and define their functions.

Simple Workflow Example Action Element Bindings
Bindings define how the simple workflow example's action elements process input and output parameters.

When defining bindings, Orchestrator presents parameters you have already defined in the workflow as
candidates for binding. If you have not defined the required parameter in the workflow yet, the only
parameter choice is NULL. Click Create parameter/attribute in workflow to create a new parameter.

vim3WaitTaskEnd Action

The vim3WaitTaskEnd action element declares constants to track the progress of a task and a polling rate. The
following table shows the input and output parameter bindings that the vim3WaitTaskEnd action requires.

Table 1‑7. Binding Values of the vim3WaitTaskEnd Action

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

task IN Bind n Local Parameter: powerOnTask
n Source parameter:

task[attribute]

n Type: VC:Task
n Description:

Contains the result of
powering on a VM.

progress IN Create n Local Parameter: progress
n Source parameter:

progress[attribute]

n Type: Boolean
n Value: No (false)
n Description:

Log progress while waiting
for the vCenter Server task
to complete.

Developing with VMware vCenter Orchestrator

90 VMware, Inc.

Table 1‑7. Binding Values of the vim3WaitTaskEnd Action (Continued)

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

pollRate IN Create n Local Parameter: pollRate
n Source parameter:

pollRate[attribute]

n Type: number
n Value: 2
n Description:

Polling rate in seconds at
which vim3WaitTaskEnd
checks the advancement of
the vCenter Server task.

actionResult OUT Create n Local Parameter:
actionResult[attribute]

n Source parameter:
returnedManagedObject[attri
bute]

n Type: Any
n Description:

The returned managed object
from the waitTaskEnd
action.

vim3WaitToolsStarted Action

The vim3WaitToolsStarted action element waits until VMware Tools have installed on a virtual machine,
and defines a polling rate and a timeout period. The following table shows the input parameter bindings the
vim3WaitToolsStarted action requires.

The vim3WaitToolsStarted action element has no output, so requires no output binding.

Chapter 1 Developing Workflows

VMware, Inc. 91

Table 1‑8. Binding Values of the vim3WaitToolsStarted Action

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Automatic binding n Local Parameter: vm
n Source parameter: vm[in-

parameter]

n Type: VC:VirtualMachine
n Value: Not editable, variable is

not a workflow attribute.
n Description:

The virtual machine to
start.

pollingRate IN Bind n Local Parameter: pollRate
n Source parameter:

pollRate[attribute]

n Type: number
n Description:

The polling rate in
seconds at which
vim3WaitTaskEnd checks the
advancement of the vCenter
server task.

timeout IN Create n Local Parameter: timeout
n Source parameter:

timeout[attribute]

n Type: number
n Value: 10
n Description:

The timeout limit that
vim3WaitToolsStarted waits
before throwing an
exception.

Bind the Simple Workflow Example Scripted Task Elements
You bind a workflow's elements together in the Schema tab of the workflow editor. Bindings define how the
scripted task elements process input parameters and generate output parameters. You also bind the
scriptable task elements to their JavaScript functions.

Prerequisites

Complete the following tasks.

n “Create the Simple Workflow Example,” on page 83.

n “Create the Schema of the Simple Workflow Example,” on page 84.

n “Define the Parameters of the Simple Workflow Example,” on page 87.

n “Define the Simple Workflow Example Decision Bindings,” on page 88.

n Open the workflow for editing in the workflow editor.

Procedure

1 On the Schema tab, click the Edit icon () of the Already Started scriptable task element.

Developing with VMware vCenter Orchestrator

92 VMware, Inc.

2 Set the following general information in the Info tab.

Option Action

Interaction Select No External interaction.

Business Status Select the check box and add the text VM already powered on.

Description Leave the text The VM is already powered on, bypassing startVM and
waitTaskEnd, checking if the VM tools are up and running..

3 Click the IN tab.

Because this is a custom scriptable task element, no properties are predefined for you.

4 Click the Bind to workflow parameter/attribute icon ().

5 Select vm from the proposed list of parameters.

6 Leave the OUT and Exception tabs blank.

This element does not generate an output parameter or exception.

7 Click the Scripting tab.

8 Add the following JavaScript function.

//Writes the following event in the vCO database

Server.log("VM '"+ vm.name +"' already started");

9 Repeat the preceding steps to bind the remaining input parameters to the other scriptable task
elements.

“Simple Workflow Example Scriptable Task Element Bindings,” on page 93 lists the bindings for the
Start VM failed, both Timeout or Error, Send Email Failed, and the OK scriptable task elements.

10 Click Save at the bottom of the workflow editor's Schema tab.

You have bound the scriptable task elements to their input and output parameters and provided the
scripting that defines their function.

What to do next

You must define the exception handling.

Simple Workflow Example Scriptable Task Element Bindings
Bindings define how the simple workflow example's scriptable task elements process input parameters. You
also bind the scriptable task elements to their JavaScript functions.

When defining bindings, Orchestrator presents parameters you have already defined in the workflow as
candidates for binding. If you have not defined the required parameter in the workflow yet, the only
parameter choice is NULL. Click Create parameter/attribute in workflow to create a new parameter.

Start VM Failed Scriptable Task

The Start VM Failed scriptable task element handles any exceptions that the startVM action throws by
setting the content of an email notification about the failure to start the virtual machine, and writing the
event in the Orchestrator log.

The following table shows the input and output parameter bindings that the Start VM Failed scriptable task
element requires.

Chapter 1 Developing Workflows

VMware, Inc. 93

Table 1‑9. Bindings of the Start VM Failed Scriptable Task Element

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Bind n Local Parameter: vm
n Source parameter: vm[in-

parameter]

n Type: VC:VirtualMachine
n Description:

The virtual machine to
power on.

errorCode IN Create n Local Parameter: errorCode
n Source parameter:

errorCode[attribute]

n Type: string
n Description:

Catch any exceptions while
powering on a VM.

body OUT Create n Local Parameter: body
n Source parameter:

body[attribute]

n Type: string
n Description: The email body

The Start VM Failed scriptable task element performs the following scripted function.

body = "Unable to execute powerOnVM_Task() on VM '"+vm.name+"', exception found: "+errorCode;

//Writes the following event in the vCO database

Server.error("Unable to execute powerOnVM_Task() on VM '"+vm.name, "Exception found:

"+errorCode);

Timeout 1 Scriptable Task Element

The Timeout 1 scriptable task element handles any exceptions that the vim3WaitTaskEnd action throws by
setting the content of an email notification about the failure of the task, and writing the event in the
Orchestrator log.

The following table shows the input and output parameter bindings that the Timeout 1 scriptable task
element requires.

Developing with VMware vCenter Orchestrator

94 VMware, Inc.

Table 1‑10. Bindings of the Timeout 1 Scriptable Task Element

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Bind n Local Parameter: vm
n Source parameter: vm[in-

parameter]

n Type: VC:VirtualMachine
n Description:

The virtual machine to
start.

errorCode IN Bind n Local Parameter: errorCode
n Source parameter:

errorCode[attribute]

n Type: string
n Description:

Catch any exceptions while
powering on a VM.

body OUT Bind n Local Parameter: body
n Source parameter:

body[attribute]

n Type: string
n Description: The email body

The Timeout 1 scriptable task element requires the following scripted function.

body = "Error while waiting for poweredOnVM_Task() to complete on VM '"+vm.name+"', exception

found: "+errorCode;

//Writes the following event in the vCO database

Server.error("Error while waiting for poweredOnVM_Task() to complete on VM '"+vm.name,

"Exception found: "+errorCode);

Timeout 2 Scriptable Task Element

The Timeout 2 scriptable task element handles any exceptions that the vim3WaitToolsStarted action throws
by setting the content of an email notification about the failure of the task, and writing the event in the
Orchestrator log.

The following table shows the input and output parameter bindings that the Timeout 2 scriptable task
element requires.

Chapter 1 Developing Workflows

VMware, Inc. 95

Table 1‑11. Bindings of the Timeout 2 Scriptable Task Element

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Bind n Local Parameter: vm
n Source parameter: vm[in-

parameter]

n Type: VC:VirtualMachine
n Description:

The virtual machine to
power on.

errorCode IN Bind n Local Parameter: errorCode
n Source parameter:

errorCode[attribute]

n Type: string
n Description:

Catch any exceptions
while powering on a VM.

body OUT Bind n Local Parameter: body
n Source parameter:

body[attribute]

n Type: string
n Description: The email body

The Timeout 2 scriptable task element requires the following scripted function.

body = "Error while waiting for VMware tools to be up on VM '"+vm.name+"', exception found:

"+errorCode;

//Writes the following event in the vCO database

Server.error("Error while waiting for VMware tools to be up on VM '"+vm.name, "Exception found:

"+errorCode);

OK Scriptable Task Element

The OK scriptable task element receives notice that the virtual machine has started successfully, sets the
content of an email notification about the successful start of the virtual machine, and writes the event in the
Orchestrator log.

The following table shows the input and output parameter bindings that the OK scriptable task element
requires.

Table 1‑12. Bindings of the OK Scriptable Task Element

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Bind n Local Parameter: vm
n Source parameter: vm[in-

parameter]

n Type: VC:VirtualMachine
n Description:

The virtual machine to
power on.

body OUT Bind n Local Parameter: body
n Source parameter:

body[attribute]

n Type: string
n Description: The email body

Developing with VMware vCenter Orchestrator

96 VMware, Inc.

The OK scriptable task element requires the following scripted function.

body = "The VM '"+vm.name+"' has started successfully and is ready for use";

//Writes the following event in the vCO database

Server.log(body);

Send Email Failed Scriptable Task Element

The Send Email Failed scriptable task element receives notice that the sending of the email failed, and writes
the event in the Orchestrator log.

The following table shows the input parameter bindings that the Send Email Failed scriptable task element
requires.

Table 1‑13. Bindings of the Send Email Failed Scriptable Task Element

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Bind n Local Parameter: vm
n Source parameter: vm[in-

parameter]

n Type: VC:VirtualMachine
n Description:

The virtual machine to
power on.

toAddress IN Bind n Local Parameter: toAddress
n Source parameter:

toAddress[in-parameter]

n Type: string
n Description:

The email address of the
person to inform of the
result of this workflow

emailErrorCode IN Create n Local Parameter:
emailErrorCode

n Source parameter:
emailErrorCode[attrbute]

n Type: string
n Description:

Catch any exceptions while
sending an email

The Send Email Failed scriptable task element requires the following scripted function.

//Writes the following event in the vCO database

Server.error("Couldn't send result email to '"+toAddress+"' for VM '"+vm.name, "Exception found:

"+emailErrorCode);

Send Email Scriptable Task Element

The purpose of the Start VM and Send Email workflow is to inform an administrator when it starts a virtual
machine. To do so, you must define the scriptable task that sends an email. To send the email, the Send
Email scriptable task element needs an SMTP server, addresses for the sender and recipient of the email, the
email subject, and the email content.

The following table shows the input and output parameter bindings that the Send Email scriptable task
element requires.

Chapter 1 Developing Workflows

VMware, Inc. 97

Table 1‑14. Bindings of the Send Email Scriptable Task Element

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Bind n Local Parameter: vm
n Source parameter: vm[in-

parameter]

n Type: VC:VirtualMachine
n Description:

The virtual machine to
power on.

toAddress IN Bind n Local Parameter: toAddress
n Source parameter:

toAddress[in-parameter]

n Type: string
n Description:

The email address of the
person to inform of the
result of this workflow

body IN Bind n Local Parameter: body
n Source parameter:

body[attribute]

n Type: string
n Description: The email body

smtpHost IN Create n Local Parameter: smtpHost
n Source parameter:

smtpHost[attribute]

n Type: string
n Description:

The email SMTP server

fromAddress IN Create n Local Parameter: fromAddress
n Source parameter:

fromAddress[attribute]

n Type: string
n Description:

The email address of the
sender

subject IN Create n Local Parameter: subject
n Source parameter:

subject[attribute]

n Type: string
n Description:

The email subject

The Send Email scriptable task element requires the following scripted function.

//Create an instance of EmailMessage

var myEmailMessage = new EmailMessage() ;

//Apply methods on this instance that populate the email message

myEmailMessage.smtpHost = smtpHost;

myEmailMessage.fromAddress = fromAddress;

myEmailMessage.toAddress = toAddress;

myEmailMessage.subject = subject;

myEmailMessage.addMimePart(body , "text/html");

Developing with VMware vCenter Orchestrator

98 VMware, Inc.

//Apply the method that sends the email message

myEmailMessage.sendMessage();

System.log("Sent email to '"+toAddress+"'");

Define the Simple Workflow Example Exception Bindings
You define exception bindings in the Schema tab in the workflow editor. Exception bindings define how
elements process errors.

The following elements in the workflow return exceptions: startVM, vim3WaitTaskEnd, Send Email, and
vim3WaitToolsStarted.

Prerequisites

Complete the following tasks.

n “Create the Simple Workflow Example,” on page 83.

n “Create the Schema of the Simple Workflow Example,” on page 84.

n “Define the Parameters of the Simple Workflow Example,” on page 87.

n “Define the Simple Workflow Example Decision Bindings,” on page 88.

n “Bind the Action Elements of the Simple Workflow Example,” on page 89.

n “Bind the Simple Workflow Example Scripted Task Elements,” on page 92.

n Open the workflow for editing in the workflow editor.

Procedure

1 On the Schema tab, click the Edit icon () of the startVM action element.

2 Click the Exception tab.

3 Click the Not set button.

4 Select errorCode from the proposed list.

5 Repeat the preceding steps to set the exception binding to errorCode for both vim3WaitTaskEnd and
vim3WaitToolsStarted.

6 Click the Edit icon () of the Send Email scriptable task element.

7 Click the Exception tab.

8 Click the Not set button.

9 Select emailErrorCode from the proposed list.

10 Click Save at the bottom of the workflow editor's Schema tab.

You have defined the exception binding for the elements that return exceptions.

What to do next

You must set the read and write properties on the attributes and parameters.

Chapter 1 Developing Workflows

VMware, Inc. 99

Set the Read-Write Properties for Attributes of the Simple Workflow Example
You can define whether parameters and attributes are read-only constants or writeable variables. You can
also set limitations on the values that users can provide for input parameters.

Setting certain parameters to read-only allows other developers to adapt the workflow or to modify it
without breaking the workflow's core function.

Prerequisites

Complete the following tasks.

n “Create the Simple Workflow Example,” on page 83.

n “Create the Schema of the Simple Workflow Example,” on page 84.

n “Define the Parameters of the Simple Workflow Example,” on page 87.

n “Define the Simple Workflow Example Decision Bindings,” on page 88.

n “Bind the Action Elements of the Simple Workflow Example,” on page 89.

n “Bind the Simple Workflow Example Scripted Task Elements,” on page 92.

n “Define the Simple Workflow Example Exception Bindings,” on page 99.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the General tab at the top of the workflow editor.

Under Attributes is a list of all the defined attributes, with check boxes next to each attribute. When you
select these check boxes, you set attributes as read-only.

2 Select the check boxes to make the following attributes read-only constants:

n progress

n pollRate

n timeout

n smtpHost

n fromAddress

n subject

You have defined which of the workflow's attributes are constants and which are variables.

What to do next

Set the parameter properties and place constraints on the possible values for that parameter.

Set the Simple Workflow Example Parameter Properties
You can set the parameter properties in the workflow editor. Setting the parameter properties affects the
behavior of the parameter, and places constraints on the possible values for that parameter.

Prerequisites

Complete the following tasks.

n “Create the Simple Workflow Example,” on page 83.

n “Create the Schema of the Simple Workflow Example,” on page 84.

Developing with VMware vCenter Orchestrator

100 VMware, Inc.

n “Define the Parameters of the Simple Workflow Example,” on page 87.

n “Define the Simple Workflow Example Decision Bindings,” on page 88.

n “Bind the Action Elements of the Simple Workflow Example,” on page 89.

n “Bind the Simple Workflow Example Scripted Task Elements,” on page 92.

n “Define the Simple Workflow Example Exception Bindings,” on page 99.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Presentation tab in the workflow editor.

The two input parameters you defined for this workflow are listed.

2 Click the (VC:VirtualMachine)vm parameter.

3 Add a description in the General tab in the bottom half of the screen.

For example, type The virtual machine to start.

4 Click the Properties tab in the bottom half of the screen.

On this tab, you can set the properties for the (VC:VirtualMachine)vm parameter.

5 Click the Add property icon ().

6 From the list of proposed properties, select the Mandatory input property, click Ok, and set its value to
Yes.

When you enable this property, users cannot run the Start VM and Send Email workflow without
providing a virtual machine to start.

7 Click the Add property icon ().

8 From the list of proposed properties, select Select value as, click Ok, and select list from the list of
possible values.

When you set this property, you set how the user selects the value of the (VC:VirtualMachine)vm input
parameter.

9 Click the (string)toAddress parameter in the top half of the Presentation tab.

10 Add a description in the Description tab in the bottom half of the screen.

For example, type The email address of the person to notify.

11 Click the Properties tab for (string)toAddress and click the Add property icon ().

12 From the list of proposed properties, select the Mandatory input property, click Ok, and set its value to
Yes.

13 Click the Add property icon ().

14 From the list of proposed properties, select Matching regular expression and click Ok.

This property allows you to set constraints on what users can provide as input .

15 Click the Value text box for Matching regular expression and set the constraints to
[a-zA-Z0-9_%-+.]+@[a-zA-Z0-9-.]+\.[a-zA-Z]{2,4}.

Setting these constraints limits user input to characters that are appropriate for email addresses. If the
user tries to input any other character for the email address of the recipient when they start the
workflow, the workflow does not start.

Chapter 1 Developing Workflows

VMware, Inc. 101

You have made both parameters mandatory, defined how the user can select the virtual machine to start,
and limited the characters that can be input for the recipient's email address.

What to do next

You must create the layout, or presentation, of the input parameters dialog box in which users specify a
workflow's input parameter values when they run it.

Set the Layout of the Simple Workflow Example Input Parameters Dialog Box
You create the layout or presentation of the input parameters dialog box in the workflow editor. The input
parameters dialog box opens when users run a workflow that needs input parameters to run.

The layout you define in the Presentation tab also defines the layout of the input parameter dialog boxes for
workflows you run using a Web view.

Prerequisites

Complete the following tasks.

n “Create the Simple Workflow Example,” on page 83.

n “Create the Schema of the Simple Workflow Example,” on page 84.

n “Define the Parameters of the Simple Workflow Example,” on page 87.

n “Define the Simple Workflow Example Decision Bindings,” on page 88.

n “Bind the Action Elements of the Simple Workflow Example,” on page 89.

n “Bind the Simple Workflow Example Scripted Task Elements,” on page 92.

n “Define the Simple Workflow Example Exception Bindings,” on page 99.

n “Set the Read-Write Properties for Attributes of the Simple Workflow Example,” on page 100.

n “Set the Simple Workflow Example Parameter Properties,” on page 100.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Presentation tab in the workflow editor.

2 Right-click the Presentation node in the presentation hierarchical list and select Create display group.

A New step node and a New group sub-node appear under the Presentation node.

3 Right-click New step and select Delete.

Because this workflow has only two parameters, you do not need multiple layers of display sections in
the input parameters dialog box.

4 Double-click New group to edit the group name and press Enter.

For example, name the display group Virtual Machine.

The text you enter here appears as a heading in the input parameter dialog box when users start the
workflow.

5 In the Description text box of the General tab at the bottom of the Presentation tab, provide a
description for the new display group.

For example, type Select the virtual machine to start.

The text you type here appears as a prompt in the input parameter dialog box when users start the
workflow.

Developing with VMware vCenter Orchestrator

102 VMware, Inc.

6 Drag the (VC:VirtualMachine)vm parameter under the Virtual Machine display group.

In the input parameters dialog box, a text box in which the user types the virtual machine name will
appear under a Virtual Machine heading.

7 Repeat the preceding steps to create a display group for the toAddress parameter, setting the following
properties:

a Create a display group and name it Recipient's Email Address.

b Add a description for the display group, for example,
Enter the email address of the person to notify when this virtual machine is powered-on.

c Drag the toAddress parameter under the Recipient's Email Address display group.

You have set up the layout of the input parameters dialog box that appears when users run the workflow.

What to do next

You have completed the development of the simple workflow example. You can now validate and run the
workflow.

Validate and Run the Simple Workflow Example
After you create a workflow, you can validate it to discover any possible errors. If the workflow contains no
errors, you can run it.

Prerequisites

Complete the following tasks.

n “Create the Simple Workflow Example,” on page 83.

n “Create the Schema of the Simple Workflow Example,” on page 84.

n “Define the Parameters of the Simple Workflow Example,” on page 87.

n “Define the Simple Workflow Example Decision Bindings,” on page 88.

n “Bind the Action Elements of the Simple Workflow Example,” on page 89.

n “Bind the Simple Workflow Example Scripted Task Elements,” on page 92.

n “Define the Simple Workflow Example Exception Bindings,” on page 99.

n “Set the Read-Write Properties for Attributes of the Simple Workflow Example,” on page 100.

n “Set the Simple Workflow Example Parameter Properties,” on page 100.

n “Set the Layout of the Simple Workflow Example Input Parameters Dialog Box,” on page 102.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click Validate in the Schema tab of the workflow editor.

The validation tool locates any errors in the definition of the workflow.

2 After you have eliminated any errors, click Save and Close at the bottom of the workflow editor.

You return to the Orchestrator client.

3 Click the Workflows view.

4 Select Workflow Examples > Start VM and Send Email in the workflow hierarchical list.

Chapter 1 Developing Workflows

VMware, Inc. 103

5 Right-click the Start VM and Send Email workflow and select Start workflow.

The input parameters dialog box opens and prompts you for a virtual machine to start and an email
address to send notifications to.

6 Select a virtual machine to start from the vCenter Server inventory.

7 Type an email address to which to send email notifications.

8 Click Submit to start the workflow.

A workflow token appears under the Start VM and Send Email workflow.

9 Click the workflow token to follow the progress of the workflow as it runs.

If the workflow runs successfully, the virtual machine you selected is in the powered-on state, and the email
recipient you defined receives a confirmation email.

What to do next

You can generate a document in which to review information about the workflow. See “Generate Workflow
Documentation,” on page 80.

Develop a Complex Workflow
Developing a complex example workflow demonstrates the most common steps in the workflow
development process and more advanced scenarios, such as creating custom decisions and loops.

In the complex workflow exercise, you develop a workflow that takes a snapshot of all the virtual machines
contained in a given resource pool. The workflow you create will perform the following tasks:

1 Prompts the user for a resource pool that contains the virtual machines of which to take snapshots.

2 Determines whether the resource pool contains running virtual machines.

3 Determines how many running virtual machines the resource contains.

4 Verifies whether an individual virtual machine running in the pool meets specific criteria for a snapshot
to be taken.

5 Takes the snapshot of the virtual machine.

6 Determines whether more virtual machines exist in the pool of which to take snapshots.

7 Repeats the verification and snapshot process until the workflow has taken snapshots of all eligible
virtual machines in the resource pool.

The ZIP file of Orchestrator examples that you can download from the landing page of the Orchestrator
documentation contains a completed version of the Take a Snapshot of All Virtual Machines in a Resource
Pool workflow.

Prerequisites

Before you attempt to develop this complex workflow, follow the exercises in “Develop a Simple Example
Workflow,” on page 81. The procedures to develop a complex workflow provide the broad steps of the
development process, but are not as detailed as the simple workflow exercises.

Procedure

1 Create the Complex Workflow Example on page 105
You must begin the workflow development process by creating the workflow in the Orchestrator
client.

Developing with VMware vCenter Orchestrator

104 VMware, Inc.

2 Create a Custom Action for the Complex Workflow Example on page 106
The Check VM scriptable element calls on an action that does not exist in the Orchestrator API. You
must create the getVMDiskModes action.

3 Create the Schema of the Complex Workflow Example on page 107
You can create a workflow's schema in the workflow editor. The workflow schema contains the
elements that the workflow runs, and determines the logical flow of the workflow.

4 (Optional) Create the Complex Workflow Example Zones on page 109
Optionally, you can highlight different zones of the workflow by adding workflow notes. Creating
different workflow zones helps to make complicated workflow schema easier to read and understand.

5 Define the Parameters of the Complex Workflow Example on page 111
You define workflow parameters in the workflow editor. The input parameters provide data for the
workflow to process. The output parameters are the data the workflow returns when it completes its
run.

6 Define the Bindings for the Complex Workflow Example on page 111
You can bind a workflow's elements together in the workflow editor. Bindings define the data flow of
the workflow. You also bind the scriptable task elements to their JavaScript functions.

7 Set the Complex Workflow Example Attribute Properties on page 121
You set the attribute properties in the General tab in the workflow editor.

8 Create the Layout of the Complex Workflow Example Input Parameters on page 121
You create the layout, or presentation, of the input parameters dialog box in the Presentation tab of
the workflow editor. The input parameters dialog box opens when users run a workflow, and is the
means by which users enter the input parameters with which the workflow runs.

9 Validate and Run the Complex Workflow Example on page 122
After you create a workflow, you can validate it to detect any possible errors. If the workflow contains
no errors, you can run it.

Create the Complex Workflow Example
You must begin the workflow development process by creating the workflow in the Orchestrator client.

For information about how to install and configure vCenter Server, see the vSphere Installation and Setup
documentation. For information about how to configure Orchestrator, see Installing and Configuring VMware
vCenter Orchestrator.

Prerequisites

Verify that the following components are installed and configured on the system.

n vCenter Server, controlling a resource pool that contains some virtual machines

n The Workflow Examples folder in the workflows hierarchical list, that you created in “Create the Simple
Workflow Example,” on page 83.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Select Workflows > Workflow Examples.

3 Right-click the Workflow Examples folder and select New workflow.

4 Name the new workflow Take a Snapshot of All Virtual Machines in a Resource Pool and click
OK.

The workflow editor opens.

Chapter 1 Developing Workflows

VMware, Inc. 105

5 On the General tab of the workflow editor, click the version number digits to increment the version
number.

For the initial creation of the workflow, set the version to 0.0.1.

6 Click the Server restart behavior value to set whether the workflow resumes after a server restart.

7 In the Description text box, type a description of what the workflow does.

8 Click Save at the bottom of the General tab.

You created the Take a Snapshot of All Virtual Machines in a Resource Pool workflow.

What to do next

You must create a custom action.

Create a Custom Action for the Complex Workflow Example
The Check VM scriptable element calls on an action that does not exist in the Orchestrator API. You must
create the getVMDiskModes action.

For more detail about creating actions, see Chapter 3, “Developing Actions,” on page 141.

Prerequisites

Create the Take a Snapshot of All Virtual Machines in a Resource Pool workflow. See “Create the Complex
Workflow Example,” on page 105.

Procedure

1 Close the workflow editor by clicking Save and Close.

2 Click the Actions view in the Orchestrator client.

3 Right-click the root of the actions hierarchical list and select New Module.

4 Name the new module com.vmware.example.

5 Right-click the com.vmware.example module and select Add Action.

6 Create an action called getVMDiskModes.

7 Right-click getVMDiskModes and select Edit.

8 Increment the version number in the General tab in the actions editor by clicking the version digits.

9 Add the following description of the action in the General tab.

This action returns an array containing the disk modes of all disks on a VM.

The elements in the array each have one of the following string values:

- persistent

- independent-persistent

- nonpersistent

- independent-nonpersistent

Legacy values:

- undoable

- append

10 Click the Scripting tab.

11 Right-click in the top pane of the Scripting tab and select Add Parameter to create the following input
parameter.

n Name: vm

Developing with VMware vCenter Orchestrator

106 VMware, Inc.

n Value: VC:VirtualMachine

n Description: The virtual machine for which to return the Disk Modes

12 Add the following scripting in the bottom of the Scripting tab.

The following code returns an array of disk modes for the disks of the virtual machine.

var devicesArray = vm.config.hardware.device;

var retArray = new Array();

if (devicesArray!=null && devicesArray.length!=0) {

 for (i in devicesArray) {

 if (devicesArray[i] instanceof VcVirtualDisk) {

 retArray.push(devicesArray[i].backing.diskMode);

 }

 }

}

return retArray;

13 Click Save and Close to exit the Actions palette.

You have defined the custom action the Take a Snapshot of All Virtual Machines in a Resource Pool
workflow requires.

What to do next

Create the workflow's schema.

Create the Schema of the Complex Workflow Example
You can create a workflow's schema in the workflow editor. The workflow schema contains the elements
that the workflow runs, and determines the logical flow of the workflow.

Prerequisites

Complete the following tasks.

n “Create the Complex Workflow Example,” on page 105.

n “Create a Custom Action for the Complex Workflow Example,” on page 106.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Schema tab in the workflow editor.

2 Add the following schema elements to the workflow schema.

Element Type Element Name Position in Schema

Scriptable task Initializing Below the Start element

Decision VMs to Process? Below the Initializing scriptable task element

Scriptable task Pool Has No VMs Below the VMs to Process? custom decision element, linked with a red
arrow

Custom decision Remaining VMs? Right of the VMs to Process? custom decision element, linked with a
green arrow

Action getVMDiskModes Right of the Remaining VMs? custom decision element, linked with a
green arrow

Custom decision Create Snapshot? Right of the getVMDiskModes action element, linked with a blue arrow

Chapter 1 Developing Workflows

VMware, Inc. 107

Element Type Element Name Position in Schema

Workflow Create a snapshot Above the Create Snapshot? custom decision element, linked with a
green arrow

Scriptable task VM Snapshots Left of the Create a snapshot workflow, linked with a blue arrow

Scriptable task Increment Left of the VM Snapshots scriptable task element, linked with a blue
arrow

Scriptable task Set Output Right of the Pool Has No VMs scriptable task element, linked with a
blue arrow

3 Add a Log Exception scriptable task element.

a Create an exception handling link from the Create a snapshot workflow to an End element.

b Drag a scriptable task element to the red dashed arrow that links the Create a snapshot workflow
to an End element.

c Double-click the scriptable task element and rename it to Log Exception.

d Move the Log Exception scriptable task element to above the VM Snapshots scriptable task element.

4 Unlink all End elements except the End element that is at the right of the Set Output scriptable task
element.

5 Link the remaining elements as described in the following table.

Element Link to Type of Arrow Description

getVMDiskModes action element Log Exception scriptable task
element

Red dashed Exception handling

Create Snapshot? custom decision
element

Increment scriptable task
element

Red False result

Log Exception scriptable task
element

Increment scriptable task
element

Blue Normal workflow
progression

Increment scriptable task element Remaining VMs? custom
decision element

Blue Normal workflow
progression

Remaining VMs? custom decision
element

Set Output scriptable task
element

Red False result

6 Click Save at the bottom of the Schema tab.

The following figure shows what the linked elements of the Take a Snapshot of All Virtual Machines in a
Resource Pool workflow should look like.

Developing with VMware vCenter Orchestrator

108 VMware, Inc.

Figure 1‑5. Linking of the Take a Snapshot of All Virtual Machines in a Resource Pool Example Workflow

What to do next

You can optionally define workflow zones by using workflow notes.

(Optional) Create the Complex Workflow Example Zones
Optionally, you can highlight different zones of the workflow by adding workflow notes. Creating different
workflow zones helps to make complicated workflow schema easier to read and understand.

Prerequisites

Complete the following tasks.

n “Create the Complex Workflow Example,” on page 105.

n “Create the Schema of the Complex Workflow Example,” on page 107.

n Open the workflow for editing in the workflow editor.

Procedure

1 Create the following workflow zones by using workflow notes.

Elements in Zone Description

Start element; Initialize scriptable
task; VMs to Process? custom
decision

Get an array of virtual machines from a resource pool,
initialize the counter of the Array and set the first
virtual machine to be treated, if any.

Pool has no VMs scriptable task. Resource pool contains no virtual machines of which to take
snapshots.

Chapter 1 Developing Workflows

VMware, Inc. 109

Elements in Zone Description

VMs remaining? custom decision;
getVMDisksModes action, Create
Snapshot? decision; Create a
snapshot workflow; VM Snapshots
scriptable task; Increment
scriptable task; Log Exception
scriptable task

Check whether any virtual machines remain in the resource
pool, check that a virtual machine meets the snapshot
criteria, take a snapshot, then loop until a snapshot has
been taken of all the virtual machines.

Set Output scriptable task; End
element

Generates the resulting array of virtual machines of which
snapshots have been taken.

2 Select a workflow note and press Ctrl+E to select the background color.

3 Click Save at the bottom of the workflow editor Schema tab.

Your workflow zones should look like the following diagram.

Figure 1‑6. Schema Diagram for Take Snapshot of all Virtual Machines in a Resource Pool Example
Workflow

What to do next

You must define the workflow's input and output parameters.

Developing with VMware vCenter Orchestrator

110 VMware, Inc.

Define the Parameters of the Complex Workflow Example
You define workflow parameters in the workflow editor. The input parameters provide data for the
workflow to process. The output parameters are the data the workflow returns when it completes its run.

Prerequisites

Complete the following tasks.

n “Create the Complex Workflow Example,” on page 105.

n “Create the Schema of the Complex Workflow Example,” on page 107.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Inputs tab in the workflow editor.

2 Define the following input parameter.

n Name: resourcePool

n Type: VC:ResourcePool

n Description: The resource pool containing the virtual machines of which to take snapshots.

3 Click the Outputs tab in the workflow editor.

4 Define the following output parameter.

n Name: snapshotVmArrayOut

n Type: Array/VC:VirtualMachine

n Description: The Array of virtual machines of which snapshots have been taken.

You have defined the workflow's input and output parameters.

What to do next

You must define the bindings between the element parameters.

Define the Bindings for the Complex Workflow Example
You can bind a workflow's elements together in the workflow editor. Bindings define the data flow of the
workflow. You also bind the scriptable task elements to their JavaScript functions.

Prerequisites

Complete the following tasks.

n “Create the Complex Workflow Example,” on page 105.

n “Create the Schema of the Complex Workflow Example,” on page 107

n “Define the Parameters of the Complex Workflow Example,” on page 111

n Review the bindings that you must define. See “Complex Workflow Example Bindings,” on page 112.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Schema tab in the workflow editor.

2 Define the bindings.

Chapter 1 Developing Workflows

VMware, Inc. 111

3 Click Save at the bottom of the Schema tab.

All the input and output parameters of the elements are bound to the appropriate parameter types and
values.

What to do next

Set the attribute properties.

Complex Workflow Example Bindings
Bindings define how the simple workflow example's action elements process input and output parameters.

The Take Snapshots of All Virtual Machines in a Resource Pool workflow requires the following input and
output parameter bindings. You also define the JavaScript functions for the scriptable task elements.

In cases in which you bind to existing parameters, the binding inherits the type and description values from
the original parameter.

Initializing Scriptable Task

The Initializing scriptable task element initializes the attributes of the workflow. The following table shows
the input and output parameter bindings that the Initializing scriptable task element requires.

Table 1‑15. Bindings of the Initializing Scriptable Task Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

resourcePool IN Bind n Local parameter: resourcePool
n Source parameter:

resourcePool[in-parameter]

n Type: VC:ResourcePool
n Description:

The resource pool
containing the virtual
machines of which to take
snapshots

allVMs OUT Create n Local parameter: allVMs
n Source parameter:

allVMs[attribute]

n Type:
Array/VC:VirtualMachine

n Description:
The virtual machines in the
resource pool.

numberOfVMs OUT Create n Local parameter: numberOfVMs
n Source parameter:

numberOfVMs[attribute]

n Type: number
n Description:

The number of virtual
machines found in the
resourcePool

Developing with VMware vCenter Orchestrator

112 VMware, Inc.

Table 1‑15. Bindings of the Initializing Scriptable Task Element (Continued)

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vmCounter OUT Create n Local parameter: vmCounter
n Source parameter:

vmCounter[attribute]

n Type: number
n Description:

The counter of the virtual
machines inside the array

vm OUT Create n Local parameter: vm
n Source parameter:

vm[attribute]

n Type: VC:VirtualMachine
n Description:

The current virtual machine
having a snapshot taken

snapshotVmArray OUT Create n Local parameter:
snapshotVmArray

n Source parameter:
snapshotVmArray[attribute]

n Type:
Array/VC:VirtualMachine

n Description:
The Array of virtual
machines of which snapshots
have been taken

The Initialize scriptable task element performs the following scripted function.

//Retrieve an array of virtual machines contained in the specified Resource Pool

allVMs = resourcePool.vm;

//Initialize the size of the Array and the first VM to snapshot

if (allVMs!=null && allVMs.length!=0) {

 numberOfVms = allVMs.length;

 vm = allVMs[0];

} else {

 numberOfVms = 0;

}

//Initialize the VM counter

vmCounter = 0;

//Initializing the array of VM snapshots

snapshotVmArray = new Array();

VMs to Process? Decision Element

The VMs to Process? decision element determines whether any virtual machines of which to take snapshots
exist in the resource pool. The following table shows the bindings that the VMs to Process? decision element
requires.

Chapter 1 Developing Workflows

VMware, Inc. 113

Table 1‑16. Bindings of the VMs to Process? Decision Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

numberOfVMs Decision Bind n Source parameter:
numberOfVMs[attribute]

n Decision statement: Greater than
n Value: 0.0
n Description:

The number of virtual
machines found in the
resourcePool

Pool Has No VMs Scriptable Task Element

The Pool Has No VMs scriptable task element logs the fact that the resource pool contains no eligible virtual
machines in the Orchestrator database. The following table shows the bindings that the Pool Has No VMs
scriptable task element requires.

Table 1‑17. Bindings of the Pool Has No VMs Scriptable Task Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

resourcePool IN Bind n Local parameter: resourcePool
n Source parameter:

resourcePool[in-parameter]

n Type: VC:ResourcePool
n Description:

The resource pool
containing the virtual
machines of which to take
snapshots.

The Pool Has No VMs scriptable task element performs the following scripted function.

//Writes the following event in the vCO database

Server.warn("The specified ResourcePool "+resourcePool.name+" does not contain any VMs.");

Remaining VMs? Custom Decision Element

The Remaining VMs? custom decision element determines whether any virtual machines of which to take
snapshots remain in the resource pool. The following table shows the bindings that the Remaining VMs?
custom decision element requires.

Developing with VMware vCenter Orchestrator

114 VMware, Inc.

Table 1‑18. Bindings of the Remaining VMs? Custom Decision Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

numberOfVMs IN Bind n Source parameter:
numberOfVMs[attribute]

n Decision statement: Greater than
n Value: 0.0
n Description:

The number of virtual
machines found in the
resourcePool

vmCounter IN Bind n Local parameter: vmCounter
n Source parameter:

vmCounter[attribute]

n Type: number
n Description:

The counter of the virtual
machines inside the array

The Remaining VMs? custom decision element performs the following scripted function.

//Checks if the workflow has reached the end of the array of VMs

if (vmCounter < numberOfVms) {

 return true;

} else {

 return false;

}

getVMDisksModes Action Element

The getVMDisksModes action element obtains the modes of the disks running in a virtual machine. The
following table shows the bindings that the getVMDisksModes action element requires.

Table 1‑19. Bindings of the getVMDisksModes Action Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vm IN Bind n Local parameter: vm
n Source parameter:

vm[attribute]

n Type: VC:VirtualMachine
n Description:

The current virtual machine
having a snapshot taken

actionResult OUT Create n Local parameter: actionResult
n Source parameter:

vmDisksModes[attribute]

n Type: Array/String
n Description:

The current Disks Modes of
the virtual machine

errorCode Exception Create Local parameter: errorCode

Chapter 1 Developing Workflows

VMware, Inc. 115

Create Snapshot? Custom Decision Element

The Create Snapshot? custom decision element determines whether to take snapshots of virtual machines,
depending on the disk modes of the virtual machines. The following table shows the bindings that the
Create Snapshot? custom decision element requires.

Table 1‑20. Bindings of the Create Snapshot? Decision Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vmDisksMode IN Bind n Local parameter: vmDisksMode
n Source parameter:

vmDisksMode[attribute]

n Type: Array/String
n Description:

The current Disks Modes of
the virtual machine

vm IN Bind n Local parameter: vm
n Source parameter:

vm[attribute]

n Type: VC:VirtualMachine
n Description:

The current virtual machine
having a snapshot taken

The Create Snapshot? custom decision element custom decision element performs the following scripted
function.

//A snapshot cannot be taken if one of its disks is in independent mode

// (independent-persistent or independent-nonpersistent)

var containsIndependentDisks = false;

if (vmDisksModes!=null && vmDisksModes.length>0) {

 for (i in vmDisksModes) {

 if (vmDisksModes[i].charAt(0)=="i") {

 containsIndependentDisks = true;

 }

 }

} else {

 //if no disk found no need to try to snapshot the VM

 System.warn("Won't snapshot '"+vm.name+"', no disks found");

 return false;

}

if (containsIndependentDisks) {

 System.warn("Won't snapshot '"+vm.name+"', independent disk(s) found");

 return false;

} else {

 System.log("Snapshoting '"+vm.name+"'");

 return true;

}

Create a snapshot Workflow Element

The Create a snapshot workflow element takes snapshots of virtual machines. The following table shows the
bindings that the Create a snapshot workflow element requires.

Developing with VMware vCenter Orchestrator

116 VMware, Inc.

Table 1‑21. Bindings of the Create a snapshot Workflow Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vm IN Bind n Local parameter: vm
n Source parameter:

vm[attribute]

n Type: VC:VirtualMachine
n Description:

An active virtual machine
of which to take a
snapshot.

name IN Create n Local parameter: name
n Source parameter:

snapshotName[attribute]

n Type: string
n Description:

The name for this snapshot.
The name does not need to
be unique for this virtual
machine.

description IN Create n Local parameter: description
n Source parameter:

snapshotDescription[attribute]
n Type: string
n Description:

A description for this
snapshot.

memory IN Create n Local parameter: memory
n Source parameter:

snapshotMemory[attribute]

n Type: Boolean
n Value: no
n Description:

If TRUE, a dump of the
internal state of the
virtual machine (a memory
dump) is included in the
snapshot.

quiesce IN Create n Local parameter: quiesce
n Source parameter:

snapshotQuiesce[attribute]

n Type: Boolean
n Value: yes
n Description:

If TRUE and the virtual
machine is powered on when
the snapshot is taken, the
VMware Tools are used to
quiesce the file system in
the virtual machine.

Chapter 1 Developing Workflows

VMware, Inc. 117

Table 1‑21. Bindings of the Create a snapshot Workflow Element (Continued)

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

snapshot OUT Create n Local parameter: snapshot
n Source parameter: NULL
n Type:

VC:VirtualMachineSnapshot

n Description:
The snapshot taken.

errorCode Exception Create Local parameter: errorCode

VM Snapshots Scriptable Task Element

The VM Snapshots scriptable task element adds the snapshots to an array. The following table shows the
bindings that the VM Snapshots scriptable task element requires.

Table 1‑22. Bindings of the VM Snapshots Scriptable Task Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vm IN Bind n Local parameter: vm
n Source parameter:

vm[attribute]

n Type: VC:VirtualMachine
n Description:

An active virtual machine
of which to take a
snapshot.

snapshotVmArray IN Bind n Local parameter:
snapshotVmArray

n Source parameter:
snapshotVmArray[attribute]

n Type:
Array/VC:VirtualMachine

n Description:
The Array of virtual
machines of which snapshots
have been taken

snapshotVmArray OUT Bind n Local parameter:
snapshotVmArray

n Source parameter:
snapshotVmArray[attribute]

n Type:
Array/VC:VirtualMachine

n Description:
The Array of virtual
machines of which snapshots
have been taken

The VM Snapshots scriptable task element performs the following scripted function.

//Writes the following event in the vCO database

Server.log("Successfully took snapshot of the VM '"+vm.name);

//Inserts the VM snapshot in an array

snapshotVmArray.push(vm);

Developing with VMware vCenter Orchestrator

118 VMware, Inc.

Increment Scriptable Task Element

The Increment scriptable task element increments the counter that counts the number of virtual machines in
the array. The following table shows the bindings that the Increment scriptable task element requires.

Table 1‑23. Bindings of the Increment Scriptable Task Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vmCounter IN Bind n Local parameter: vmCounter
n Source parameter:

vmCounter[attribute]

n Type: number
n Description:

The counter of the virtual
machines inside the array

allVMs IN Bind n Local parameter: allVMs
n Source parameter:

allVMs[attribute]

n Type:
Array/VC:VirtualMachine

n Description:
The virtual machines in the
resource pool.

vmCounter OUT Bind n Local parameter: vmCounter
n Source parameter:

vmCounter[attribute]

n Type: number
n Description:

The counter of the virtual
machines inside the array

vm OUT Bind n Local parameter: vm
n Source parameter:

vm[attribute]

n Type: VC:VirtualMachine
n Description:

The current virtual machine
having a snapshot taken

The Increment scriptable task element performs the following scripted function.

//Increases the array VM counter

vmCounter++;

//Sets the next VM to be snapshot in the attribute vm

vm = allVMs[vmCounter];

Log Exception Scriptable Task Element

The Log Exception scriptable task element handles exceptions from the workflow and action elements. The
following table shows the bindings that the Log Exception scriptable task element requires.

Chapter 1 Developing Workflows

VMware, Inc. 119

Table 1‑24. Bindings of the Log Exception Task Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vm IN Bind n Local parameter: vm
n Source parameter:

vm[attribute]

n Type: VC:VirtualMachine
n Description:

The current virtual machine
having a snapshot taken

errorCode IN Bind n Local parameter: errorCode
n Source parameter:

errorCode[attribute]

n Type: string
n Description:

An exception caught while
taking a snapshot of a
virtual machine

The Log Exception scriptable task element performs the following scripted function.

//Writes the following event in the vCO database

Server.error("Coudln't snapshot the VM '"+vm.name+"', exception: "+errorCode);

Set Output Scriptable Task Element

The Set Output scriptable generates the workflow's output parameter, that contains the array of virtual
machines of which snapshots have been taken. The following table shows the bindings that the Set Output
scriptable task element requires.

Table 1‑25. Bindings of the Set Output Task Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

snapshotVmArray IN Bind n Local parameter:
snapshotVmArray

n Source parameter:
snapshotVmArray[attribute]

n Type:
Array/VC:VirtualMachine

n Description:
The Array of virtual
machines of which snapshots
have been taken

snapshotVmArrayOut OUT Bind n Local parameter:
snapshotVmArrayOut

n Source parameter:
snapshotVmArrayOut[out-
parameter]

n Type:
Array/VC:VirtualMachine

n Description:
The Array of virtual
machines of which snapshots
have been

Developing with VMware vCenter Orchestrator

120 VMware, Inc.

The Set Output scriptable task element performs the following scripted function.

//Passes the value of the internal attribute to a workflow output parameter

snapshotVmArrayOut = snapshotVmArray;

Set the Complex Workflow Example Attribute Properties
You set the attribute properties in the General tab in the workflow editor.

Prerequisites

Complete the following tasks.

n “Create the Complex Workflow Example,” on page 105.

n “Create the Schema of the Complex Workflow Example,” on page 107.

n “Define the Bindings for the Complex Workflow Example,” on page 111.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the General tab.

2 Select the read-only check box of the following attributes to make them read-only constants:

n snapshotName

n snapshotDescription

n snapshotMemory

n snapshotQuiesce

You have defined which of the workflow's attributes are constants and which are variables.

What to do next

You must create the workflow presentation, which creates the layout of the input parameters dialog box in
which users specify a workflow's input parameter values when they run it.

Create the Layout of the Complex Workflow Example Input Parameters
You create the layout, or presentation, of the input parameters dialog box in the Presentation tab of the
workflow editor. The input parameters dialog box opens when users run a workflow, and is the means by
which users enter the input parameters with which the workflow runs.

Prerequisites

Complete the following tasks.

n “Create the Complex Workflow Example,” on page 105.

n “Create the Schema of the Complex Workflow Example,” on page 107.

n “Define the Parameters of the Complex Workflow Example,” on page 111.

n “Define the Bindings for the Complex Workflow Example,” on page 111.

n “Set the Complex Workflow Example Attribute Properties,” on page 121.

n Open the workflow for editing in the workflow editor.

Chapter 1 Developing Workflows

VMware, Inc. 121

Procedure

1 Click the Presentation tab in the workflow editor.

The Take a Snapshot of All Virtual Machines in a Resource Pool workflow has only one input
parameter, so creating the presentation is straightforward.

2 Right-click the Presentation node in the presentation hierarchical list and select Create display group.

3 Delete the New step element that appears above the New group element.

4 Double-click the New group element and change the group name to Resource Pool.

5 Provide a description of the Resource Pool display group in the Description text box on the General
tab at the bottom of the Presentation tab.

For example,
Enter the name of the resource pool that contains the virtual machines of which to take a

snapshot.

6 Click the (VC:ResourcePool)resourcePool parameter.

7 Click the Properties tab for (VC:ResourcePool)resourcePool.

8 Right-click within the Properties tab and select Add Property > Mandatory input.

9 Right-click within the Properties tab and select Add Property > Select value as.

When you set this property, you set how the user selects the value of the
(VC:ResourcePool)resourcePool input parameter.

10 Drag the (VC:ResourcePool)resourcePool parameter under the Resource Pool display group.

You have created the layout of the dialog box that appears when users run the workflow.

What to do next

You have completed the development of the complex workflow example. You can now validate and run the
workflow.

Validate and Run the Complex Workflow Example
After you create a workflow, you can validate it to detect any possible errors. If the workflow contains no
errors, you can run it.

Prerequisites

Create a workflow, lay out its schema, define the links and bindings, define the parameter properties, and
create the presentation of the input parameters dialog box.

Complete the following tasks.

n “Create the Complex Workflow Example,” on page 105.

n “Create a Custom Action for the Complex Workflow Example,” on page 106.

n “Create the Schema of the Complex Workflow Example,” on page 107.

n “Define the Parameters of the Complex Workflow Example,” on page 111.

n “Define the Bindings for the Complex Workflow Example,” on page 111.

n “Set the Complex Workflow Example Attribute Properties,” on page 121.

n “Create the Layout of the Complex Workflow Example Input Parameters,” on page 121.

n Open the workflow for editing in the workflow editor.

Developing with VMware vCenter Orchestrator

122 VMware, Inc.

Procedure

1 Click Validation in the Schema tab of the workflow editor.

The validation tool detects any errors in the definition of the workflow.

2 After you have eliminated any errors, click Save and Close at the bottom of the workflow editor.

You return to the Orchestrator client.

3 Click the Workflows view.

4 In the workflow hierarchical list, select Workflow Examples > Take a Snapshot of All Virtual
Machines in a Resource Pool.

5 Right-click the Take a Snapshot of All Virtual Machines in a Resource Pool workflow and select Start
workflow.

The input parameters dialog box opens and prompts you for a resource pool that contains the virtual
machines of which to take a snapshot.

6 Click Submit to run the workflow.

A workflow token appears under the Take a Snapshot of All Virtual Machines in a Resource Pool
workflow.

7 Click the workflow token to follow the progress of the workflow as it runs.

If the workflow runs successfully, the workflow takes a snapshot of all of the virtual machines in the
selected resource pool.

What to do next

You can generate a document in which to review information about the workflow. See “Generate Workflow
Documentation,” on page 80.

Chapter 1 Developing Workflows

VMware, Inc. 123

Developing with VMware vCenter Orchestrator

124 VMware, Inc.

Scripting 2
Orchestrator uses JavaScript to create building blocks from which you create actions, workflow elements,
and policies that access the APIs of the technologies that you plug into Orchestrator.

Orchestrator uses the Mozilla Rhino 1.7R4 JavaScript engine as its scripting engine. The scripting engine
provides variable type checking, name space management, automatic completion, and exception handling.

The Orchestrator workflow engine allows you to use basic JavaScript language features, such as if, loops,
arrays, and strings. You can use objects in scripting that the Orchestrator API provides, or objects from any
other API that you import into Orchestrator through a plug-in and that you map to JavaScript objects. For
information about Rhino, see the Mozilla Rhino Web site.

This chapter includes the following topics:

n “Orchestrator Elements that Require Scripting,” on page 125

n “Limitations of the Mozilla Rhino Implementation in Orchestrator,” on page 126

n “Using the Orchestrator Scripting API,” on page 126

n “Exception Handling Guidelines,” on page 132

n “Orchestrator JavaScript Examples,” on page 133

Orchestrator Elements that Require Scripting
Not all Orchestrator elements require you to write scripts. To provide maximum flexibility to your
applications, you can customize certain elements by adding JavaScript functions.

You can add scripts in the following Orchestrator elements.

Actions Actions are scripted functions. You can limit the scripting you write for an
action to a single operation, to maximize the potential for action reuse by
other elements, such as other workflows. Alternatively, an action can contain
many operations, to limit the complexity of workflows, although this does
reduce the capacity for reusing the action.

Policies You set policies by using scripts that watch for trigger events. When the
trigger events occur, policies launch orchestration operations that you define
in scripts.

Workflows The Scriptable Task workflow element allows you to write a custom scripted
operation or sequence of operations that you can use in the workflows. You
also define the Boolean decision statement for custom decision elements in
scripts that return either true or false.

VMware, Inc. 125

Limitations of the Mozilla Rhino Implementation in Orchestrator
Orchestrator uses the Mozilla Rhino 1.7R4 JavaScript engine. However, the implementation of Rhino in
Orchestrator presents some limitations.

When writing scripts for workflows, you must consider the following limitations of the Mozilla Rhino
implementation in Orchestrator.

n When a workflow runs, the objects that pass from one workflow element to another are not JavaScript
objects. What is passed from one element to the next is the serialization of a Java object that has a
JavaScript image. As a consequence, you cannot use the whole JavaScript language, but only the classes
that are present in the API Explorer. You cannot pass function objects from one workflow element to
another.

n Orchestrator runs the code in scriptable task elements in a context that is not the Rhino root context.
Orchestrator transparently wraps scriptable task elements and actions into JavaScript functions, which
it then runs. A scriptable task element that contains System.log(this); does not display the global
object this in the same way as a standard Rhino implementation does.

n You can only call actions that return nonserializable objects from scripting, and not from workflows. To
call an action that returns a nonserializable object, you must write a scriptable task element that calls the
action by using the System.getModuleModuleName.action() method.

n Workflow validation does not check whether a workflow attribute type is different from an input type
of an action or subworkflow. If you change the type of a workflow input parameter, for example from
VIM3:VirtualMachine to VC:VirtualMachine, but you do not update any scriptable tasks or actions that
use the original input type, the workflow validates but does not run.

Using the Orchestrator Scripting API
The Orchestrator API exposes as JavaScript objects and methods all of the objects and functions of the
technologies that Orchestrator accesses through its plug-ins.

For example, you can access JavaScript implementations of the vCenter Server API through the Orchestrator
API, to include vCenter operations in scripted elements that you create. You can also access JavaScript
implementations of objects from all of the other plug-ins you install in the Orchestrator server. If you create
a custom plug-in to a third-party application, you map the objects from its API to JavaScript objects that the
Orchestrator API then exposes.

Procedure

1 Access the Scripting Engine from the Workflow Editor on page 127
The Orchestrator scripting engine uses the Mozilla Rhino 1.7R4 JavaScript engine to help you write
scripts for scripted elements in workflows. You access the scripting engine for scripted workflow
elements from the Scripting tab in the workflow editor.

2 Access the Scripting Engine from the Action or Policy Editor on page 128
The Orchestrator scripting engine uses the Mozilla Rhino JavaScript engine to help you write scripts
for actions or policies. You access the scripting engine for actions and policies from the Scripting tabs
in the action and policy editors.

3 Access the Orchestrator API Explorer on page 128
Orchestrator provides an API Explorer that you can use to search the Orchestrator API and see the
documentation for JavaScript objects that you can use in scripted elements.

4 Use the Orchestrator API Explorer to Find Objects on page 128
The Orchestrator API exposes the API of all plugged-in technologies, including the entire vCenter
Server API. The Orchestrator API Explorer helps you find the objects you need to add to scripts.

Developing with VMware vCenter Orchestrator

126 VMware, Inc.

5 Writing Scripts on page 129
The Orchestrator scripting engine helps you to write scripts. Automatic insertion of functions and
automatic completion of lines of scripting accelerates the scripting process and minimizes the potential
for writing errors in scripts.

6 Add Parameters to Scripts on page 131
The Orchestrator scripting engine helps you to import available parameters into scripts.

7 Accessing the Orchestrator Server File System from JavaScript and Workflows on page 131
Orchestrator limits access to the Orchestrator server file system from JavaScript and Workflows to
specific directories.

8 Accessing Java Classes from JavaScript on page 132
By default, Orchestrator restricts JavaScript access to a limited set of Java classes. If you require
JavaScript access to a wider range of Java classes, you must set an Orchestrator system property to
allow this access.

9 Accessing Operating System Commands from JavaScript on page 132
The Orchestrator API provides a scripting class, Command, that runs commands in the Orchestrator
server host operating system. To prevent unauthorized access to the Orchestrator server host, by
default, Orchestrator applications do not have permission to run the Command class.

Access the Scripting Engine from the Workflow Editor
The Orchestrator scripting engine uses the Mozilla Rhino 1.7R4 JavaScript engine to help you write scripts
for scripted elements in workflows. You access the scripting engine for scripted workflow elements from the
Scripting tab in the workflow editor.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Right-click a workflow in the Workflows view of the Orchestrator client and select Edit.

3 Click the Schema tab in the workflows editor.

4 Add a Scriptable Task element or a Custom Decision element to the workflow schema.

5 Click on the scriptable element's Scripting tab.

You accessed the scripting engine to define the scripted functions of workflow elements. The Scripting tab
allows you to navigate through the API, consult documentation about the objects, search for objects, and
write JavaScript.

What to do next

Search the Orchestrator API using the API Explorer.

Chapter 2 Scripting

VMware, Inc. 127

Access the Scripting Engine from the Action or Policy Editor
The Orchestrator scripting engine uses the Mozilla Rhino JavaScript engine to help you write scripts for
actions or policies. You access the scripting engine for actions and policies from the Scripting tabs in the
action and policy editors.

Procedure

1 Select an option from the drop-down menu in the Orchestrator client, depending on the type of the
element whose scripting you want to edit.

Option Description

Design Select this option to edit the scripting of an action element.

Run Select this option to edit the scripting of a policy.

2 Right-click an action or policy in the Actions or Policies views and select Edit.

3 Click the Scripting tab in the action or policy editor.

You accessed the scripting engine to define the scripted functions of action or policy elements. The Scripting
tab allows you to navigate through the API, consult documentation about the objects, search for objects, and
write JavaScript.

What to do next

Search the Orchestrator API using the API Explorer.

Access the Orchestrator API Explorer
Orchestrator provides an API Explorer that you can use to search the Orchestrator API and see the
documentation for JavaScript objects that you can use in scripted elements.

You can consult an online version of the Scripting API for the vCenter Server plug-in on the Orchestrator
documentation home page.

Procedure

1 Log in to the Orchestrator client.

2 Select Tools > API Explorer.

The API Explorer appears. You can use it to search all the objects and functions of the Orchestrator API.

What to do next

Use the API Explorer to write scripts for scriptable elements.

Use the Orchestrator API Explorer to Find Objects
The Orchestrator API exposes the API of all plugged-in technologies, including the entire vCenter Server
API. The Orchestrator API Explorer helps you find the objects you need to add to scripts.

Prerequisites

Open the API Explorer.

Developing with VMware vCenter Orchestrator

128 VMware, Inc.

Procedure

1 Enter the name or part of a name of an object in the API Explorer Search text box and click Search.

To limit your search to a particular object type, uncheck or check the Scripting Class, Attributes &
Methods and Types & Enumerations check boxes.

2 Double-click the element in the proposed list.

The object is highlighted in the hierarchical list on the left. A documentation pane under the
hierarchical list presents information about the object.

What to do next

Use the objects you find in scripts.

JavaScript Objects in the API Explorer
The Orchestrator API Explorer identifies and groups together the different kinds of JavaScript objects in the
hierarchical tree on the left of the Scripting tab or API Explorer dialog box. The API Explorer uses icons to
help you identify the different kinds of object.

The following table describes the objects of the Orchestrator API and shows their icon.

Table 2‑1. JavaScript Objects in the Orchestrator API

Object Icon in Hierarchical List Description

Type Types

Function set Internal type that contains a set of
static methods

Primitive Primitive types

Object Standard Orchestrator scripting objects

Attribute JavaScript attributes

Method JavaScript methods

Constructor JavaScript constructors

Enumeration JavaScript enumerations

String set String set, default values

Module A collection of actions

Plug-in Image that plug-in defines The APIs that plug-ins expose to
Orchestrator

Writing Scripts
The Orchestrator scripting engine helps you to write scripts. Automatic insertion of functions and automatic
completion of lines of scripting accelerates the scripting process and minimizes the potential for writing
errors in scripts.

Prerequisites

Open a scripted element for editing and click its Scripting tab.

Chapter 2 Scripting

VMware, Inc. 129

Procedure

1 Navigate through the hierarchical list of objects on the left of the Scripting tab, or use the API Explorer
search function, to select a type, class, or method to add to the script.

2 Right-click the type, class, or method and select Copy.

If the scripting engine does not allow you to copy the element you selected, this object is not possible in
the context of the script.

3 Right-click in the scripting pad, and paste the element you copied into the appropriate place in the
script.

The scripting engine enters the element into the script, complete with its constructor and an instance
name.

For example, if you copied the Date object, the scripting engine pastes the following code into the script.

var myDate = new Date();

4 Copy and paste a method to add to the script.

The scripting engine completes the method call, adding the required attributes.

For example, if you copied the cloneVM() method from the com.vmware.library.vc.vm module, the
scripting engine pastes the following code into the script.

System.getModule("com.vmware.library.vc.vm").cloneVM(vm,folder,name,spec)

The scripting engine highlights those parameters that you already defined in the element. Any
undefined parameters remain unhighlighted.

5 Place the cursor at the end of an element you pasted into the script and press Ctrl+space to select from a
contextual list of possible methods and attributes that the object can call.

NOTE The automatic completion feature is currently experimental.

You added object and functions to the script.

What to do next

Add parameters to the script.

Color Coding of Scripting Keywords
When you add scripts on the Scripting tab of a scripted workflow element, certain types of keywords
appear in different colors to enhance the readability of the code.

All scripting appears in standard black font unless stated otherwise.

Table 2‑2. Color Coding of Scripting Keywords

Keyword Type Text Color in Scripting Tab

Standard JavaScript keywords, for example if, else, for,
and new

Bold black

Variable declarations, namely var Green

Modifiers in loops, for example in Red

Null variable values Purple

Non-null variable values Green

Code comments Italic gray

Orchestrator plug-in object types, for example
VC:VirtualMachine or VC:Host

Green

Developing with VMware vCenter Orchestrator

130 VMware, Inc.

Table 2‑2. Color Coding of Scripting Keywords (Continued)

Keyword Type Text Color in Scripting Tab

Output text Green

Workflow attributes Pink

Workflow inputs Pink

Workflow outputs Pink

Add Parameters to Scripts
The Orchestrator scripting engine helps you to import available parameters into scripts.

If you have already defined parameters for the element you are editing, they appear as links in the Scripting
tab toolbar.

Prerequisites

A scripted element is open for editing and its Scripting tab is open.

Procedure

1 Move the cursor to the appropriate position in a script in the scripting pad of the Scripting tab.

2 Click the parameter link in the Scripting tab toolbar.

Orchestrator inserts the parameter at the position of the cursor.

3 Insert a parameter with a null value into the script.

If you pass null values to primitive types such as integers, Booleans, and Strings, the Orchestrator
scripting API automatically sets the default value for this argument.

You added parameters to the script.

What to do next

Add access to Java classes in scripts.

Accessing the Orchestrator Server File System from JavaScript and Workflows
Orchestrator limits access to the Orchestrator server file system from JavaScript and Workflows to specific
directories.

JavaScript functions and workflows only have read, write, and execute permission in the permanent
directory c:\orchestrator.

The Orchestrator administrator can modify the folders to which JavaScript functions and workflows have
read, write, and execute access by setting a system property. See Installing and Configuring VMware vCenter
Orchestrator for information about setting system properties.

JavaScript functions and workflows also have read, write, and execute permission in the server system
default temporary I/O folder. Writing to the default temporary I/O folder is the only portable, guaranteed,
and configuration-independent means of accessing the file system with full permissions. However, files that
you write to the temporary I/O folder are lost when you reboot the server.

You obtain the default temporary I/O folder by calling the System.getTempDirectory method in JavaScript
functions.

Chapter 2 Scripting

VMware, Inc. 131

Access the Server File System Using the System.getTempDirectory Method
As an alternative to writing to the folders on the Orchestrator server system in which the administrator has
set the appropriate permissions, you can write to the default temporary I/O folder.

Orchestrator has full read, write, and execute rights in the default temporary I/O folder by default. You
obtain the default temporary I/O folder by using the System.getTempDirectory method in JavaScript
functions

Procedure

u Include the following code line in JavaScript functions to access the java.io.temp-dir folder.

var tempDir = System.getTempDirectory()

Accessing Java Classes from JavaScript
By default, Orchestrator restricts JavaScript access to a limited set of Java classes. If you require JavaScript
access to a wider range of Java classes, you must set an Orchestrator system property to allow this access.

By default, the Orchestrator JavaScript engine can access only the classes in the java.util.* package.

The Orchestrator administrator can allow access to other Java classes from JavaScript functions by setting a
system property. See Installing and Configuring VMware vCenter Orchestrator for information about setting
system properties.

Accessing Operating System Commands from JavaScript
The Orchestrator API provides a scripting class, Command, that runs commands in the Orchestrator server
host operating system. To prevent unauthorized access to the Orchestrator server host, by default,
Orchestrator applications do not have permission to run the Command class.

The Orchestrator administrator can allow access to the Command scripting class by setting the
com.vmware.js.allow-local-process=true system property.

Exception Handling Guidelines
The Orchestrator implementation of the Mozilla Rhino JavaScript Engine supports exception handling, to
allow you to process errors. You must use the following guidelines when writing exception handlers in
scripts.

n Use the following European Computer Manufacturers Association (ECMA) error types. Use Error as a
generic exception that plug-in functions return, and the following specific error types.

n TypeError

n RangeError

n EvalError

n ReferenceError

n URIError

n SyntaxError

The following example shows a URIError definition.

try {

 ...

 throw new URIError("VirtualMachine with ID 'vm-0056'

 not found on 'vcenter-test-1'") ;

Developing with VMware vCenter Orchestrator

132 VMware, Inc.

 ...

} catch (e if e instanceof URIError) {

}

n All exceptions that scripts do not catch must be simple string objects of the form <type>:SPACE<human
readable message>, as the following example shows.

throw "ValidationError: The input parameter 'myParam' of type 'string' is too short."

n Write human readable messages as clearly as possible.

n Simple string exception type checking must use the following pattern.

try {

 throw "VMwareNoSpaceLeftOnDatastore: Datastore 'myDatastore' has no space left" ;

} catch (e if (typeof(e)=="string" && e.indexOf("VMwareNoSpaceLeftOnDatastore:") == 0)) {

 System.log("No space left on device") ;

 // Do something useful here

}

n Simple string exception type checking, must use the following pattern in scripted elements in
workflows.

if (typeof(errorCode)=="string"

 && errorCode.indexOf("VMwareNoSpaceLeftOnDatastore:")

 == 0) {

 // Do something useful here

}

Orchestrator JavaScript Examples
You can cut, paste, and adapt the Orchestrator JavaScript examples to help you write JavaScripts for
common orchestration tasks.

n Basic Scripting Examples on page 134
Workflow scripted elements, actions, and policies require basic scripting of common tasks. You can
cut, paste, and adapt these examples into your scripted elements.

n Email Scripting Examples on page 135
Workflow scripted elements can include scripting of common email-related tasks. You can cut, paste,
and adapt these examples into your scripted elements.

n File System Scripting Examples on page 137
Workflow scripted elements, actions, and policies require scripting of common file system tasks. You
can cut, paste, and adapt these examples into your scripted elements.

n LDAP Scripting Examples on page 137
Workflow scripted elements, actions, and policies require scripting of common LDAP tasks. You can
cut, paste, and adapt these examples into your scripted elements.

n Logging Scripting Examples on page 138
Workflow scripted elements, actions, and policies require scripting of common logging tasks. You can
cut, paste, and adapt these examples into your scripted elements.

n Networking Scripting Examples on page 138
Workflow scripted elements, actions, and policies require scripting of common networking tasks. You
can cut, paste, and adapt these examples into your scripted elements.

Chapter 2 Scripting

VMware, Inc. 133

n Workflow Scripting Examples on page 138
Workflow scripted elements, actions, and policies require scripting examples of common workflow
tasks. You can cut, paste, and adapt these examples into your scripted elements.

Basic Scripting Examples
Workflow scripted elements, actions, and policies require basic scripting of common tasks. You can cut,
paste, and adapt these examples into your scripted elements.

Access XML Documents
The following JavaScript example allows you to access XML documents from JavaScript by using the
ECMAScript for XML (E4X) implementation in the Orchestrator JavaScript API.

NOTE In addition to implementing E4X in the JavaScript API, Orchestrator also provides a Document
Object Model (DOM) XML implementation in the XML plug-in. For information about the XML plug-in and
its sample workflows, see the Using vCenter Orchestrator Plug-Ins.

var people = <people>

 <person id="1">

 <name>Moe</name>

 </person>

 <person id="2">

 <name>Larry</name>

 </person>

 </people>;

System.log("'people' = " + people);

// built-in XML type

System.log("'people' is of type : " + typeof(people));

// list-like interface System.log("which contains a list of " +

people.person.length() + " persons");

System.log("whose first element is : " + people.person[0]);

// attribute 'id' is mapped to field '@id'

people.person[0].@id='47';

// change Moe's id to 47

// also supports search by constraints

System.log("Moe's id is now : " + people.person.(name=='Moe').@id);

// suppress Moe from the list

delete people.person[0];

System.log("Moe is now removed.");

// new (sub-)document can be built from a string

people.person[1] = new XML("<person id=\"3\"><name>James</name></person>");

System.log("Added James to the list, which is now :");

for each(var person in people..person)

for each(var person in people..person){

 System.log("- " + person.name + " (id=" + person.@id + ")");

}

Developing with VMware vCenter Orchestrator

134 VMware, Inc.

Setting and Obtaining Properties from a Hashtable
The following JavaScript example sets properties in a hashtable and obtains the properties from the
hashtable. In the following example, the key is always a String and the value is an object, a number, a
Boolean, or a String.

var table = new Properties() ;

table.put("myKey",new Date()) ;

// get the object back

var myDate= table.get("myKey") ;

System.log("Date is : "+myDate) ;

Replace the Contents of a String
The following JavaScript example replaces the content of a String and replaces it with new content.

var str1 = "'hello'" ;

var reg = new RegExp("(')", "g");

var str2 = str1.replace(reg,"\\'") ;

System.log(""+str2) ; // result : \'hello\'

Compare Types
The following JavaScript example checks whether an object matches a given object type.

var path = 'myurl/test';

if(typeof(path, string)){

 throw("string");

else {

 throw("other");

}

Run a Command in the Orchestrator Server
The following JavaScript example allows you to run a command line on the Orchestrator server. Use the
same credentials as those used to start the server.

NOTE Access to the file system is limited by default. To access the file server from Orchestrator, see
“Accessing the Orchestrator Server File System from JavaScript and Workflows,” on page 131.

var cmd = new Command("ls -al") ;

cmd.execute(true) ;

System.log(cmd.output) ;

Email Scripting Examples
Workflow scripted elements can include scripting of common email-related tasks. You can cut, paste, and
adapt these examples into your scripted elements.

When you run a mail workflow, it uses the default mail server configuration that you set in the Orchestrator
configuration interface. You can override the default values by using input parameters, or by defining
custom values in workflow scripted elements.

Obtain an Email Address
The following JavaScript example obtains the email address of the current owner of a running script.

var emailAddress = Server.getRunningUser().emailAddress ;

Chapter 2 Scripting

VMware, Inc. 135

Send an Email
The following JavaScript example sends an email to the defined recipient, through an SMTP server, with the
defined content.

var message = new EmailMessage() ;

message.smtpHost = "smtpHost" ;

message.subject= "my subject" ;

message.toAddress = "receiver@vmware.com" ;

message.fromAddress = "sender@vmware.com" ;

message.addMimePart("This is a simple message","text/html") ;

message.sendMessage() ;

Retrieve Email Messages
The following JavaScript example retrieves the messages of an email account, without deleting them, by
using the scripting API provided by the MailClient class.

var myMailClient = new MailClient();

myMailClient.setProtocol(mailProtocol);

if(useSSL){

 myMailClient.enableSSL();

}

myMailClient.connect(mailServer, mailPort, mailUsername, mailPassword);

System.log("Successfully login!");

try {

 myMailClient.openFolder("Inbox");

 var messages = myMailClient.getMessages();

 System.log("Reading messages...!");

 if (messages != null && messages.length > 0) {

 System.log("You have " + messages.length + " email(s) in your inbox");

 for (i = 0; i < messages.length; i++) {

 System.log("");

 System.log("-----MSG-------");

 System.log("Headers: ");

 var headerProp = messages[i].getHeaders();

 for each(key in headerProp.keys){

 System.log(key+": "+headerProp.get(key));

 }

 System.log("");

 System.log("Message["+ i +"] with from: " + messages[i].from + " to: " + messages[i].to);

 System.log("Message["+ i +"] with subject: " + messages[i].subject);

 var content = messages[i].getContent();

 System.log("Msg content as string: " + content);

 }

 } else {

 System.warn("No messages found");

 }

Developing with VMware vCenter Orchestrator

136 VMware, Inc.

} finally {

 myMailClient.closeFolder();

 myMailClient.close();

}

File System Scripting Examples
Workflow scripted elements, actions, and policies require scripting of common file system tasks. You can
cut, paste, and adapt these examples into your scripted elements.

NOTE Access to the file system is limited by default. To access the file server from Orchestrator, see
“Accessing the Orchestrator Server File System from JavaScript and Workflows,” on page 131.

Add Content to a Simple Text File
The following JavaScript example adds content to a text file.

var tempDir = System.getTempDirectory() ;

var fileWriter = new FileWriter(tempDir + "/readme.txt") ;

fileWriter.open() ;

fileWriter.writeLine("File written at : "+new Date()) ;

fileWriter.writeLine("Another line") ;

fileWriter.close() ;

Obtain the Contents of a File
The following JavaScript example obtains the contents of a file from the Orchestrator server host machine.

var tempDir = System.getTempDirectory() ;

var fileReader = new FileReader(tempDir + "/readme.txt") ;

fileReader.open() ;

var fileContentAsString = fileReader.readAll();

fileReader.close() ;

LDAP Scripting Examples
Workflow scripted elements, actions, and policies require scripting of common LDAP tasks. You can cut,
paste, and adapt these examples into your scripted elements.

Convert LDAP Objects to Active Directory Objects
The following JavaScript example converts LDAP group elements to Active Directory user group objects,
and the reverse.

var ldapGroup ;

// convert from ldap element to Microsoft:UserGroup object

var adGroup = ActiveDirectory.search("UserGroup",ldapGroup.commonName) ;

// convert back to LdapGroup element

var ldapElement = Server.getLdapElement(adGroup.distinguishedName) ;

Chapter 2 Scripting

VMware, Inc. 137

Logging Scripting Examples
Workflow scripted elements, actions, and policies require scripting of common logging tasks. You can cut,
paste, and adapt these examples into your scripted elements.

Persistent Logging
The following JavaScript example creates persistent log entries.

Server.log("This is a persistant message", "enter a long description here");

Server.warn("This is a persistant warning", "enter a long description here");

Server.error("This is a persistant error", "enter a long description here");

Non-Persistent Logging
The following JavaScript example creates non-persistent log entries.

System.log("This is a non-persistant log message");

System.warn("This is a non-persistant log warning");

System.error("This is a non-persistant log error");

Networking Scripting Examples
Workflow scripted elements, actions, and policies require scripting of common networking tasks. You can
cut, paste, and adapt these examples into your scripted elements.

Obtain Text from a URL
The following JavaScript example accesses a URL, obtains text, and converts it to a string.

var url = new URL("http://www.vmware.com") ;

var htmlContentAsString = url.getContent() ;

Workflow Scripting Examples
Workflow scripted elements, actions, and policies require scripting examples of common workflow tasks.
You can cut, paste, and adapt these examples into your scripted elements.

Return All Workflows Run by the Current User
The following JavaScript example obtains all workflow runs from the server and checks whether they
belong to the current user. You can use this scripting with Webview components.

var allTokens = Server.findAllForType('WorkflowToken');

var currentUser = Server.getCredential().username;

var res = [];

for(var i = 0; i<res.length; i++){

 if(allTokens[i].runningUserName == currentUser){

 res.push(allTokens[i]);

 }

}

return res;

Developing with VMware vCenter Orchestrator

138 VMware, Inc.

Access the Current Workflow Token
You can access the current workflow token by using the workflow variable. It is an object of type
WorkflowToken that provides access to the current workflow run. The following JavaScript example gets the
ID of the workflow token and its start date.

System.log("Current workflow run ID: " + workflow.id);

System.log("Current workflow run start date: "+workflow.startDate);

Schedule a Workflow
The following JavaScript example starts a workflow with a given set of properties, and then schedules it to
start one hour later.

var workflowToLaunch = myWorkflow ;

// create parameters

var workflowParameters = new Properties() ;

workflowParameters.put("name","John Doe") ;

// change the task name

workflowParameters.put("__taskName","Workflow for John Doe") ;

// create scheduling date one hour in the future

var workflowScheduleDate = new Date() ;

var time = workflowScheduleDate.getTime() + (60*60*1000) ;

workflowScheduleDate.setTime(time) ; var scheduledTask =

workflowToLaunch.schedule(workflowParameters,workflowScheduleDate);

Run a Workflow on a Selection of Objects in a Loop
The following JavaScript example takes the array of virtual machines and runs a workflow on each one in a
For loop. VMs and workflowToRun are workflow inputs.

var len=VMs.length;

for (var i=0; i < len; i++)

{

 var VM = VMs[i];

 //var workflowToLaunch = Server.getWorkflowWithId("workflowId");

 var workflowToLaunch = workflowToRun;

 if (workflowToLaunch == null) {

 throw "Workflow not found";

 }

var workflowParameters = new Properties();

workflowParameters.put("vm",VM);

var wfToken = workflowToLaunch.execute(workflowParameters);

System.log ("Ran workflow on " +VM.name);

}

Chapter 2 Scripting

VMware, Inc. 139

Developing with VMware vCenter Orchestrator

140 VMware, Inc.

Developing Actions 3
Orchestrator provides libraries of predefined actions. Actions represent individual functions that you use as
building blocks in workflows, Web views, and scripts.

Actions are JavaScript functions. They take multiple input parameters and have a single return value. They
can call on any object in the Orchestrator API, or on objects in any API that you import into Orchestrator by
using a plug-in.

When a workflow runs, an action takes its input parameters from the workflow's attributes. These attributes
can be either the workflow's initial input parameters, or attributes that other elements in the workflow set
when they run.

This chapter includes the following topics:

n “Reusing Actions,” on page 141

n “Access the Actions View,” on page 141

n “Components of the Actions View,” on page 142

n “Creating Actions,” on page 142

n “Use Action Version History,” on page 145

n “Restore Deleted Actions,” on page 145

Reusing Actions
When you define an individual function as an action instead of coding it directly into a scriptable task
workflow element, you expose it in the library. When an action is visible in the library, other workflows can
use it.

When you define actions independently from the workflows that call on them, you can update or optimize
the actions more easily. Defining individual actions also allows other workflows to reuse actions. When a
workflow runs, Orchestrator caches each action only the first time that the workflow runs it. Orchestrator
can then reuse the cached action. Caching actions is useful for recursive calls in a workflow, or fast loops.

You can duplicate actions, export them to other workflows or packages, or move them to a different module
in the actions hierarchical list.

Access the Actions View
The Orchestrator client interface features an Actions view that provides access to the Orchestrator server's
libraries of actions.

The Actions view of the Orchestrator client interface presents you with a hierarchical list of all the actions
available in the Orchestrator server.

VMware, Inc. 141

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Actions view.

3 Browse the libraries of actions by expanding the nodes of the actions hierarchical list.

You can use the Actions view to view information about the actions in the libraries and create and edit
actions.

Components of the Actions View
When you click an action in the actions hierarchical list, information about that action appears in the
Orchestrator client's right pane.

The Actions view presents four tabs.

General Displays general information about the action, including its name, its version
number, the permissions, and a description.

Scripting Shows the action's return types, input parameters, and the JavaScript code
that defines the action's function.

Events Shows all the events that this action encountered or triggered.

Permissions Shows which users and user groups have permission to access this action.

Creating Actions
You can define individual functions as actions that other elements, such as workflows, can use. Actions are
JavaScript functions with defined input and output parameters and permissions.

n Create an Action on page 142
When you define an individual function as an action, instead of coding it directly into a scriptable task
workflow element, you can expose it in the library for other workflows to use.

n Find Elements That Implement an Action on page 143
If you edit an action and change its behavior, you might inadvertently break a workflow or
application that implements that action. Orchestrator provides a function to find all of the actions,
workflows, or packages that implement a given element. You can check whether modifying the
element affects the operation of other elements.

n Action Coding Guidelines on page 144
To optimize the performance of workflows and to maximize the potential to reuse actions, you should
follow some basic coding guidelines when creating actions.

Create an Action
When you define an individual function as an action, instead of coding it directly into a scriptable task
workflow element, you can expose it in the library for other workflows to use.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Actions view.

3 Expand the root of the actions hierarchical list and navigate to the module in which you want to create
the action.

Developing with VMware vCenter Orchestrator

142 VMware, Inc.

4 Right-click the module and select Add action.

5 Type a name for the action in the text box and click OK.

Your custom action is added to the library of actions.

6 Right-click the action and select Edit.

7 Click the Scripting tab.

8 To change the default return type, click the void link.

9 Add the action input parameters by clicking the arrow icon.

10 Write the action script.

11 Set the action permissions.

12 Click Save and close.

You created a custom action and added the action input parameters.

What to do next

You can use the new custom action in a workflow.

Find Elements That Implement an Action
If you edit an action and change its behavior, you might inadvertently break a workflow or application that
implements that action. Orchestrator provides a function to find all of the actions, workflows, or packages
that implement a given element. You can check whether modifying the element affects the operation of
other elements.

IMPORTANT The Find Elements that Use this Element function checks all packages, workflows, and policies,
but it does not check in scripts. Consequently, modifying an action might affect an element that calls this
action in a script that the Find Elements that Use this Element function did not identify.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Actions view.

3 Expand the nodes of the actions hierarchical list to navigate to a given action.

4 Right-click the action and select Find Elements that Use this Element.

A dialog box shows all of the elements, such as workflows or packages, that implement this action.

5 Double-click an element in the list of results to show that element in the Orchestrator client.

You located all of the elements that implement an action.

What to do next

You can check whether modifying this element affects any other elements.

Chapter 3 Developing Actions

VMware, Inc. 143

Action Coding Guidelines
To optimize the performance of workflows and to maximize the potential to reuse actions, you should
follow some basic coding guidelines when creating actions.

Basic Action Guidelines
When you create an action, you must use basic guidelines.

n Every action must include a description of its role and function.

n Write short, elementary actions and combine them in a workflow.

n Avoid writing actions that perform multiple functions, because this limits the potential for reusing the
action.

n Avoid actions that run for long periods of time. Instead, create a loop in the workflow and include a
Waiting Event or Waiting Timer element after the action element.

n Do not write check points in actions. Workflows set a check point at the start and end of each element's
run.

n Avoid writing loops in an action. Create loops in the workflow instead. If the server restarts, a running
workflow resumes at its last check point, at the start of an element. If you write a loop inside an action
and the server restarts while the workflow is running that action, the workflow resumes at the check
point at the beginning of that action, and the loop starts again from the beginning.

Action Naming Guidelines
Use basic guidelines when you name actions.

n Write action names in English.

n Start action names with a lowercase letter. Use an uppercase letter at the beginning of each conjoined
word in the name. For example, myAction.

n Make action names as explicit as possible, so that the function of the action is clear. For example,
backupAllVMsInPool.

n Make module names as explicit as possible.

n Make module names unique.

n Use the inverse Internet address format for module names. For example,
com.vmware.myactions.myAction.

Action Parameter Guidelines
Use basic guidelines when you write action parameter definitions.

n Write parameter names in English.

n Start parameter names with a lowercase letter.

n Make parameter names as explicit as possible.

n Preferably limit parameter names to a single word. If a name must contain more than one word, use an
uppercase letter at the beginning of each conjoined word in the name. For example, myParameter.

n Use the plural form for parameters that represent an array of objects.

n Make variable names unambiguous, for example, displayName.

n Include a description for each parameter to describe its purpose.

Developing with VMware vCenter Orchestrator

144 VMware, Inc.

n Do not use an excessive number of parameters in a single action.

Use Action Version History
You can use version history to revert an action to a previously saved state. You can revert the action state to
an earlier or a later action version. You can also compare the differences between the current state of the
action and a saved version of the action.

Orchestrator creates a new version history item for each action when you increase and save the action
version. Subsequent changes to the action do not change the current version item. For example, when you
create action version 1.0.0 and save it, the state of the action is stored in the database. If you make any
changes to the action, you can save the action state in the Orchestrator client, but you cannot apply the
changes to action version 1.0.0. To store the changes in the database, you must create a subsequent action
version and save it. The version history is kept in the database along with the action itself.

When you delete an action, Orchestrator marks the element as deleted in the database without deleting the
version history of the element from the database. This way, you can restore deleted actions. See “Restore
Deleted Actions,” on page 145.

Prerequisites

Open an action for editing.

Procedure

1 Click the General tab in the action editor.

2 Click Show version history.

A version history window appears.

3 Select an action version and click Diff Against Current to compare the differences.

A window that displays the differences between the current action version and the selected action
version appears.

4 Select an action version and click Revert to restore the state of the action.

CAUTION If you have not saved the current action version, it is deleted from the version history and
you cannot revert back to the current version.

The action state is reverted to the state of the selected version.

Restore Deleted Actions
You can restore actions that have been deleted from the library.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Actions view.

3 Navigate to the folder in which you want to restore a deleted action or actions.

4 Right-click the folder and select Restore deleted actions.

5 Select the action or actions that you want to restore and click Restore.

The action or actions appear in the selected folder.

Chapter 3 Developing Actions

VMware, Inc. 145

Developing with VMware vCenter Orchestrator

146 VMware, Inc.

Creating Resource Elements 4
Workflows and Web views can require as attributes objects that you create independently of Orchestrator.
To use external objects as attributes in workflows or Web views, you import them into the Orchestrator
server as resource elements.

Objects that workflows and Web views can use as resource elements include image files, scripts, XML
templates, HTML files, and so on. Any workflows or Web views that run in the Orchestrator server can use
any resource elements that you import into Orchestrator.

Importing an object into Orchestrator as a resource element allows you to make changes to the object in a
single location, and to propagate those changes automatically to all the workflows or Web views that use
this resource element.

You can organize resource elements into folders. The maximum size for a resource element is 16MB.

This chapter includes the following topics:

n “View a Resource Element,” on page 147

n “Import an External Object to Use as a Resource Element,” on page 148

n “Edit the Resource Element Information and Access Rights,” on page 148

n “Save a Resource Element to a File,” on page 149

n “Update a Resource Element,” on page 149

n “Add a Resource Element to a Workflow,” on page 150

n “Add a Resource Element to a Web View,” on page 151

View a Resource Element
You can view existing resource elements in the Orchestrator client, to examine their contents and discover
which workflows or Web views use this resource element.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Resources view.

3 Expand the hierarchical tree viewer to navigate to a resource element.

4 Click a resource element to show information about it in the right pane.

5 Click the Viewer tab to display the contents of the resource element.

6 Right-click the resource element and select Find Elements that Use this Element.

Orchestrator lists all the workflows and Web views that use this resource element.

VMware, Inc. 147

What to do next

Import and edit a resource element.

Import an External Object to Use as a Resource Element
Workflows and Web views can require as attributes objects that you create independently of Orchestrator.
To use external objects as attributes in workflows or Web views, you import them to the Orchestrator server
as resource elements.

Prerequisites

Verify that you have an image file, script, XML template, HTML file, or other type of object to import.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Resources view.

3 Right-click a resource folder in the hierarchical list or the root and select New folder to create a folder in
which to store the resource element.

4 Right-click the resource folder in which to import the resource element and select Import resources.

5 Select the resource to import and click Open.

Orchestrator adds the resource element to the folder you selected.

You imported a resource element into the Orchestrator server.

What to do next

Edit the general information of the resource element and set the user access permissions.

Edit the Resource Element Information and Access Rights
After you import an object into the Orchestrator server as a resource element, you can edit the resource
element's details and permissions.

Prerequisites

Verify that you have imported an image, script, XML, or HTML file, or any other type of object into
Orchestrator as a resource element.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Resources view.

3 Right-click the resource element and select Edit.

4 Click the General tab and set the resource element name, version, and description.

5 Click the Permissions tab and click the Add access rights icon () to define permissions for a user
group.

6 Type a user group name in the Filter text box.

7 Select a user group and click OK.

8 Right-click the user group and select Add access rights.

Developing with VMware vCenter Orchestrator

148 VMware, Inc.

9 Check the appropriate check boxes to set the level of permissions for this user group and click OK.

Permissions are not cumulative. To allow a user to view the resource element, use it in their workflows
or Web views, and change the permissions, you must check all check boxes.

10 Click Save and close to exit the editor.

You edited the general information about the resource element and set the user access rights.

What to do next

Save the resource element to a file to update it, or add the resource element to a workflow or Web view.

Save a Resource Element to a File
You can save a resource element to a file on your local system. Saving the resource element as a file allows
you to edit it.

You cannot edit a resource element in the Orchestrator client. For example, if the resource element is an
XML configuration file or a script, you must save it locally to modify it.

Prerequisites

Verify that the Orchestrator server contains a resource element that you can save to a file.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Resources view.

3 Right-click the resource element and select Save to file.

4 Make the required modifications to the file.

You saved a resource element to a file.

What to do next

Update the resource element in the Orchestrator server.

Update a Resource Element
If a file or object that you have defined as a resource element changes, you can update the resource element
in the Orchestrator server.

Prerequisites

Verify that you have imported an image, script, XML, or HTML file, or any other type of object into
Orchestrator as a resource element.

Procedure

1 Modify the source file of the resource element in your local system.

2 From the drop-down menu in the Orchestrator client, select Design.

3 Click the Resources view.

4 Navigate through the hierarchical list to the resource element that you have updated.

5 Right-click the resource element and select Update resource.

6 (Optional) Click the Viewer tab to check that Orchestrator has updated the resource element.

Chapter 4 Creating Resource Elements

VMware, Inc. 149

You updated a resource element that the Orchestrator server contains.

Add a Resource Element to a Workflow
Resource elements are external objects that you can import to the Orchestrator server for workflows to use
as attributes when they run. For example, a workflow can use an imported XML file that defines a map to
convert one type of data to another, or a script that defines a function, when it runs.

Prerequisites

Verify that you have the following objects in your Orchestrator server:

n An image, script, XML, or HTML file, or any other type of object imported into Orchestrator as a
resource element.

n A workflow that requires the resource element as an attribute.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 Expand the hierarchical tree viewer to navigate to the workflow that requires the resource element as
an attribute.

4 Right-click the workflow and select Edit.

5 On the General tab, in the Attributes pane, click the Add attribute icon ().

6 Click the attribute name and type a new name for the attribute.

7 Click Type to set the attribute type.

8 In the Select a type dialog box, type resource in the Filter box to search for an object type.

Option Action

Define a single resource element as
an attribute

Select ResourceElement from the list.

Define a folder that contains
multiple resource elements as an
attribute

Select ResourceElementCategory from the list.

9 Click Value and type the name of the resource element or category of resource elements in the Filter

text box.

10 From the proposed list, select the resource element or a folder containing resource elements and click
Select.

11 Click Save and close to exit the editor.

You added a resource element or folder of resource elements as an attribute in a workflow.

Developing with VMware vCenter Orchestrator

150 VMware, Inc.

Add a Resource Element to a Web View
Resource elements are external objects that you can import into the Orchestrator server for Web views to use
as Web view attributes. Web view attributes identify objects with which Web view components interact.

Prerequisites

Verify that you have the following objects in your Orchestrator server:

n An image, script, XML, or HTML file, or any other type of object imported into Orchestrator as a
resource element.

n A Web view that requires the resource element as an attribute.

Procedure

1 From the drop-down menu in the Orchestrator client, select Administer.

2 Click the Web Views view.

3 If the Web view is running, right-click the Web view to which you want to add the resource element
and select Unpublish.

4 Right-click the Web view and select Edit.

5 Click the Attributes tab.

6 Click the Add attribute icon ().

7 Click the attribute name and type a new name for the attribute.

8 Click Type to set the attribute type.

9 In the Select a type dialog box, type resource in the Filter box to search for an object type.

Option Action

Define a single resource element as
an attribute

Select ResourceElement from the list.

Define a folder that contains
multiple resource elements as an
attribute

Select ResourceElementCategory from the list.

10 Click Value and type the name of the resource element or category of resource elements in the Filter

text box.

11 From the proposed list, select the resource element or a folder containing resource elements and click
Select.

12 Click Save and close to exit the editor.

You added a resource element or folder of resource elements as an attribute in a Web view.

Chapter 4 Creating Resource Elements

VMware, Inc. 151

Developing with VMware vCenter Orchestrator

152 VMware, Inc.

Creating Packages 5
Packages are used for transporting content from one Orchestrator server to another. Packages can contain
workflows, actions, policies, Web views, configurations, or resources.

When you add an element to a package, Orchestrator checks for dependencies and adds any dependent
elements to the package. For example, if you add a workflow that uses actions or other workflows,
Orchestrator adds those actions and workflows to the package.

When you import a package, the server compares the versions of the different elements of its contents to
matching local elements. The comparison shows the differences in versions between the local and imported
elements. The administrator can decide whether to import the package, or can select specific elements to
import.

Packages use digital rights management to control how the receiving server can use the contents of the
package. Orchestrator signs packages and encrypts the packages for data protection. Packages can track
which users export and redistribute elements by using X509 certificates.

IMPORTANT Packages that Orchestrator 3.2 generates are upwardly compatible with Orchestrator 4.x and
5.x. You can import a package from an Orchestrator 3.2 server to an Orchestrator 4.x or 5.x server. Packages
from Orchestrator 4.x and 5.x are not backward compatible with Orchestrator 3.2. You cannot import a
package generated by an Orchestrator 4.x or 5.x server to an Orchestrator 3.2 server.

For more information about using packages, see Using the VMware vCenter Orchestrator Client.

n Create a Package on page 154
You can export workflows, policies, actions, plug-in references, resources, Web views, and
configuration elements in packages. All elements that an element in a package implements are added
to the package automatically, to ensure compatibility between versions. If you do not want to add the
referenced elements, you can delete them in the package editor.

n Set User Permissions on a Package on page 155
You set different levels of permission on a package to limit the access that different users or user
groups can have to the contents of that package.

VMware, Inc. 153

Create a Package
You can export workflows, policies, actions, plug-in references, resources, Web views, and configuration
elements in packages. All elements that an element in a package implements are added to the package
automatically, to ensure compatibility between versions. If you do not want to add the referenced elements,
you can delete them in the package editor.

Prerequisites

Verify that the Orchestrator server contains elements such as workflows, actions, and policies that you can
add to a package.

Procedure

1 From the drop-down menu in the Orchestrator client, select Administer.

2 Click the Packages view.

3 Right-click in the left pane and select Add package.

4 Type the name of the new package and click Ok.

The syntax for package names is domain.your_company.folder.package_name.

For example, com.vmware.myfolder.mypackage.

5 Right-click the package and select Edit.

The package editor opens.

6 On the General tab, add a description for the package.

7 On the Workflows tab, add workflows to the package.

n Click Insert Workflows (list search) to search for and select workflows in a selection dialog box.

n Click Insert Workflows (tree browsing) to browse and select folders of workflows from the
hierarchical list.

8 On the Policy Templates, Actions, Web View, Configurations, Resources, and Used Plug-Ins tabs,
add policy templates, actions, Web views, configuration elements, resource elements, and plug-ins to
the package.

9 Click Save and close to exit the editor.

You created a package and added elements to it.

What to do next

Set user permissions for this package.

Developing with VMware vCenter Orchestrator

154 VMware, Inc.

Set User Permissions on a Package
You set different levels of permission on a package to limit the access that different users or user groups can
have to the contents of that package.

You can select the different users and user groups for which to set permissions from the users and user
groups in the Orchestrator LDAP or vCenter Single Sign-On server. Orchestrator defines levels of
permissions that you can apply to users or groups.

View The user can view the elements in the package, but cannot view the schemas
or scripting.

Inspect The user can view the elements in the package, including the schemas and
scripting.

Edit The user can edit the elements in the package.

Admin The user can set permissions on the elements in the package.

Prerequisites

Create a package, open it for editing in the package editor, and add the necessary elements to the package.

Procedure

1 Click the Permissions tab in the package editor.

2 Click the Add access rights icon () to define permissions for a new user or user group.

3 Search for a user or user group.

The search results show all of the users and user groups that match the search.

4 Select a user or user group.

5 Check the appropriate check boxes to set the level of permissions for this user and click Select.

To allow a user to view the elements, inspect the schema and scripting, run and edit the elements, and
change the permissions, you must check all check boxes.

6 Click Save and close to exit the editor.

You created a package and set the appropriate user permissions.

Chapter 5 Creating Packages

VMware, Inc. 155

Developing with VMware vCenter Orchestrator

156 VMware, Inc.

Creating Plug-Ins by Using Maven 6
The Orchestrator Appliance provides a repository containing Maven artifacts, which you can use to create
plug-in projects from archetypes.

The repository is hosted at https://orchestrator_server:8281/vco-repo/ or http://orchestrator_server:
8280/vco-repo/, in case your Maven version does not support the HTTPS protocol. This location is
embedded in the pom.xml file of standard Orchestrator Maven plug-in projects.

This chapter includes the following topics:

n “Create an Orchestrator Plug-In with Maven from an Archetype,” on page 157

n “Maven Archetypes,” on page 158

n “Plug-In Development Best Practices,” on page 158

Create an Orchestrator Plug-In with Maven from an Archetype
You can create a standard Orchestrator Maven plug-in from an archetype by running commands in the
Windows Command Prompt.

Prerequisites

n Verify that you have installed Orchestrator Appliance 5.5.1 or later.

n Verify that you have installed Apache Maven 3.0.4 or 3.0.5.

Procedure

1 Create a project in interactive mode by choosing an archetype.

mvn archetype:generate -DarchetypeCatalog=https://orchestrator_server:8281/vco-

repo/archetype-catalog.xml -DrepoUrl=https://orchestrator_server:8281/vco-repo -

Dmaven.repo.remote=https://orchestrator_server:8281/vco-repo -

Dmaven.wagon.http.ssl.insecure=true -Dmaven.wagon.http.ssl.allowall=true

2 (Optional) If you cannot access the repository over HTTPS, you can access it over HTTP. If you access
the repository over HTTP or have a valid SSL certificate, you can create a project without using the -
Dmaven.wagon.http.ssl.allowall=true flag.

mvn archetype:generate -DarchetypeCatalog=http://orchestrator_server:8280/vco-repo/archetype-

catalog.xml -DrepoUrl=http://orchestrator_server:8280/vco-repo -

Dmaven.repo.remote=http://orchestrator_server:8280/vco-repo -

Dmaven.wagon.http.ssl.insecure=true

VMware, Inc. 157

3 Navigate to the project directory and build the plug-in.

cd project_dir && mvn clean install -Dmaven.wagon.http.ssl.insecure=true -

Dmaven.wagon.http.ssl.allowall=true

If the build process is successful, the plug-in .dar file is generated in the DAR module's target/ directory.

Maven Archetypes
You can use a set of predefined Maven archetypes as templates for developing Orchestrator plug-ins.

The following table describes the default Maven archetypes available in Orchestrator.

Table 6‑1. Default Maven Archetypes

Archetype Description

com.vmware.o11n:o11n-plugin-archetype-simple A simple plug-in, which exposes a single scripting object
and calls it.

com.vmware.o11n:o11n-package-archetype A content-only Maven project, which can be used to keep
packages in source form for better interaction with RCS,
diff, post-processing, and so on.

com.vmware.o11n:o11n-client-archetype-rest A simple command-line tool, which communicates with
the Orchestrator REST API and calls a workflow.

com.vmware.o11n:o11n-plugin-archetype-inventory A plug-in that demonstrates inventory use. The plug-in
implements a repository, an adapter, and a factory for a
single type. The inventory is stored in a file on a disk.

com.vmware.o11n:o11n-archetype-inventory-
annotation

A plug-in whose vso.xml descriptor is generated on top of
annotations.

com.vmware.o11n:o11n-archetype-spring A plug-in that uses Spring-based SDK, provides a DI-
enabled environment, and adds higher-level services in
comparison to standard plug-in APIs.

Plug-In Development Best Practices
You can improve the process for delivering Orchestrator plug-ins created with Maven by performing a set
of recommended activities.

Using a Repository Manager
If you are creating plug-ins in a larger organization, use an enterprise repository manager to set up the
default Orchestrator Appliance repository to be added as a proxy repository. Using a central repository
enables easier management and plug-in project collaboration. When you complete the first build in the new
repository, the repository manager caches the artifacts from the Orchestrator Appliance repository and you
can turn off the default repository.

Locking Workflows
After you verify that all workflows in your plug-in work as expected, lock them to prevent unauthorized
modifications. Having locked workflows ensures that the basic functions of the plug-in cannot be
compromised. If users need to modify a default workflow for a specific purpose, they can create a copy of
the original workflow and edit it.

To produce release builds with locked workflows, pass the -DallowedMask=vf parameter to Maven.

Creating a Signing Certificate
Create a signing certificate, so that users can identify the plug-ins that you provide as trusted content.

Developing with VMware vCenter Orchestrator

158 VMware, Inc.

If you do not create a signing certificate, the .package file is signed with thearchetype.keystore file. Create a
certificate by using the keytool from JDK and store the certificate in the keystore under the
_dunesrsa_alias_ alias. You can use the -DkeystoreLocation= and -DkeystorePassword parameters to
provide the path to the keystore file and the password to Maven, or you can edit the pom.xml file to insert
the values manually.

Chapter 6 Creating Plug-Ins by Using Maven

VMware, Inc. 159

Developing with VMware vCenter Orchestrator

160 VMware, Inc.

Index

A
Action element 25
action elements, binding 89
Action view 141
actions

adding 142
attributes 144
basic guidelines 144
binding 90
coding guidelines 144
creating 106, 142
finding elements that implement 143
naming 144
parameters 144
restoring deleted 145
reusing 141
version history 145

Actions 141
Actions view 142
API Explorer, accessing 128
attributes

definition 19, 87
read-write properties 100, 121

audience 7

B
binding

action elements 89
decision elements 88
scriptable tasks 92

bindings
action 90
defining 35, 111, 112
exception 39, 99
scriptable tasks 93

Boolean choices 38

C
Command scripting class 132
complex workflow example

notes 109
zones 109

composite type 40, 42
configuration elements, creating 70
creating workflows 15

Custom Decision element 25

D
debug a workflow, example 75
debugging workflows 74
decision element, bindings 88
Decision element 25
decision elements

deleting branches 38
deleting paths 38
linking 37

Decision elements 38
documentation 80

E
End Workflow element 25
exception bindings, creating 39
exception handing 39
exceptions binding 99

F
file system, System.getTempDirectory 132
file system access 131
Foreach 40
Foreach element 41, 42

G
generate, workflow documentation 80

I
IN bindings 35
input parameters

definition 111
obtaining from user 44
properties 45
providing during run 48, 49
setting properties 45

input parameters dialog box, creating 102, 121
input parameters, obtaining from user 43

J
javascript, file system access 131
JavaScript 125, 132

VMware, Inc. 161

L
linking

decision elements 37
schema elements 32

long-running workflows
date object 65
Date object 65
timer-based 66
trigger 68
Trigger object 65
trigger-based 69

M
Maven, archetypes 158
Mozilla Rhino JavaScript engine, limitations 126

N
nested workflows 62

O
Orchestrator client, accessing 14
Orchestrator API 126, 141
OS commands, accessing 132
OUT bindings 35
output parameters 13

P
packages

create 154
digital rights management 153
permissions 155
signature 153

parameter properties
dynamic 45
static 45

parameters
definition 19, 87, 111
promote 24
properties 100
read-write properties 100

PDF 80
plug-in

archetype 157
creating 157
development 157

plug-in development, best practices 158
presentation

creating 102, 121
creating display groups 121
display groups 43
input steps 43

Presentation tab 43, 45, 121
Presentation Tab 45
presentations 17

properties
parameter 100
read-write 100

R
relative date object 51, 65
remote workflow

calling 61
prerequisites 61

resource elements
adding to workflows 150
adding to Web views 151
editing 148
importing 148
save to file 149
updating 149
viewing 147

resume a failed workflow run 79
resuming a failed workflow run

enabling 79
set behavior 78
timeout 79

S
schema

bindings 33, 35
custom decisions 36
data flow 33, 35
decisions 32, 36
exception path 31, 32
links 31, 32
logical flow 31, 32
standard path 31, 32

Schema elements 40, 41
schema element, properties 28
schema elements

binding 111, 112
bindings 35
decisions 38
linking 32
properties 29
user interaction 48, 49

schemas 17
scriptable task elements, binding 92, 93
Scriptable Task element 25
scripting

access scripting engine from workflow 127
access scripting engine from actions 128
access scripting engine from policies 128
access to Java classes 132
accessing OS commands 132
adding objects 129
adding parameters 131

Developing with VMware vCenter Orchestrator

162 VMware, Inc.

API Explorer 128
auto-completion 129
basic examples 134
color coding of keywords 130
email examples 135
examples 133
exception handling 132
file system examples 137
JavaScript object types 129
LDAP examples 137
logging examples 138
Mozilla Rhino JavaScript engine 126
networking examples 138
scripted elements 125
workflow examples 138

scripting engine 126
search, modifying results 24
search results 22
simple workflow example

notes 86
zones 86

Start Workflow element 25
Start workflows in a series workflow 64
Start workflows in parallel workflow 64
subworkflow, running multiple times 41
system properties 132

T
token 13

U
updated information 9
User Interaction element 25
user interactions

attributes 48, 49
defining external inputs 53
elements 48, 49
relative timeout 51, 52

user interactions, exceptions 54
user interactions, input parameters dialog

box 55
user interactions, responding 56
user interactions, security.group attribute 49
user interactions, timeout.date attribute 50, 52
using 141

V
viewing 141

W
Waiting Event element 25
Waiting Timer element 25

worfklows, validation 72
workflow

attributes 18, 19, 87
create simple 81
creating 83, 105
end 75
notes 86, 109
parameters 18, 19, 87
presentation 17, 44
running 103, 122
schema 17
validation 103, 122
zones 86, 109

workflow debugger 74
workflow attributes, naming 20
workflow development 11
workflow documentation 80
workflow editor

General tab 18
opening 16
tabs 17

workflow folders 15
workflow parameters, naming 20
workflow presentation, creating 44
workflow schema

bindings 31
copying elements 23
create 22, 84, 107
edit 22
elements 22
links 31
schema element properties tabs 29
viewing 22

Workflow schema, schema element
properties 28

workflow schema, elements 25
workflow token

attributes 75
check points 75

workflow token attributes 14
workflow validation tool 72
workflows

asynchronous 57, 60
branching 38
calling other workflows 56
creation 15
debugging 74
debugging example 75
develop complex 104
editing 16
editing standard workflows 16
file system access 131

Index

VMware, Inc. 163

input parameter properties 46
nested 57
OGNL expression values 47
permissions 71, 72
phases of development 14
propagate input parameters 59
propagate presentation 59
propagating changes 58
restoring deleted 81
resume a failed workflow run 79
resuming a failed workflow run 78
running 75, 76
running in workflow editor 76
running on a selection of objects 63
scheduled 57, 61
standard library 16
starting 57
synchronous 57, 59
testing 15
validation 73
version history 80

workflows, reserved OGNL keywords 20

X
XML scripting, E4X 134

Developing with VMware vCenter Orchestrator

164 VMware, Inc.

	Developing with VMware vCenter Orchestrator
	Contents
	Developing with VMware vCenter Orchestrator
	Updated Information
	Developing Workflows
	Key Concepts of Workflows
	Workflow Parameters
	Workflow Attributes
	Workflow Schema
	Workflow Presentation
	Workflow Tokens

	Phases in the Workflow Development Process
	Access Rights for the Orchestrator Client
	Testing Workflows During Development
	Creating and Editing a Workflow
	Create a Workflow
	Edit a Workflow
	Edit a Workflow from the Standard Library
	Workflow Editor Tabs

	Provide General Workflow Information
	Defining Attributes and Parameters
	Define Workflow Parameters
	Define Workflow Attributes
	Attribute and Parameter Naming Restrictions

	Workflow Schema
	View Workflow Schema
	Building a Workflow in the Workflow Schema
	Edit a Workflow Schema
	Copy Workflow Schema Elements
	Promote Input and Output Parameters
	Modify Search Results

	Schema Elements
	Schema Element Properties
	Edit the Global Properties of a Schema Element
	Schema Element Properties Tabs

	Links and Bindings
	Logical Flow of a Workflow
	Element Links
	Create Standard Path Links
	Data Flow of a Workflow
	Element Bindings
	Define Element Bindings

	Decisions
	Create Decision Element Links
	Delete a Linked Decision Element
	Create Workflow Branches Using Decisions

	Exception Handling
	Create Exception Bindings

	Foreach Elements and Composite Types
	Define a Foreach Element
	Define a Composite Type in a Foreach Element

	Obtaining Input Parameters from Users When a Workflow Starts
	Creating the Input Parameters Dialog Box In the Presentation Tab
	Create the Presentation of the Input Parameters Dialog Box

	Setting Parameter Properties
	Set Parameter Properties
	Workflow Input Parameter Properties
	Predefined Constant Values for OGNL Expressions

	Requesting User Interactions While a Workflow Runs
	Add a User Interaction to a Workflow
	Set the User Interaction security.group Attribute
	Set the timeout.date Attribute to an Absolute Date
	Calculate a Relative Timeout for User Interactions
	Set the timeout.date Attribute to a Relative Date
	Define the External Inputs for a User Interaction
	Define User Interaction Exception Behavior
	Create the Input Parameters Dialog Box for the User Interaction
	Respond to a Request for a User Interaction

	Calling Workflows Within Workflows
	Workflow Elements that Call Workflows
	Propagate Workflow Changes to other Workflows
	Propagate the Input Parameters and Presentation of a Child Workflow to the Parent Workflow

	Call a Workflow Synchronously
	Call a Workflow Asynchronously
	Schedule a Workflow
	Prerequisites for Calling a Remote Workflow from Within Another Workflow
	Call Several Workflows Simultaneously

	Running a Workflow on a Selection of Objects
	Implement the Start Workflows in a Series and Start Workflows in Parallel Workflows

	Developing Long-Running Workflows
	Set a Relative Time and Date for Timer-Based Workflows
	Create a Timer-Based Long-Running Workflow
	Create a Trigger Object
	Create a Trigger-Based Long-Running Workflow

	Configuration Elements
	Create a Configuration Element

	Workflow User Permissions
	Set User Permissions on a Workflow

	Validating Workflows
	Validate a Workflow and Fix Validation Errors

	Debugging Workflows
	Debug a Workflow
	Example Workflow Debugging

	Running Workflows
	Run a Workflow in the Workflow Editor
	Run a Workflow

	Resuming a Failed Workflow Run
	Set the Behavior for Resuming a Failed Workflow Run
	Set Custom Properties for Resuming Failed Workflow Runs
	Resume a Failed Workflow Run

	Generate Workflow Documentation
	Use Workflow Version History
	Restore Deleted Workflows
	Develop a Simple Example Workflow
	Create the Simple Workflow Example
	Create the Schema of the Simple Workflow Example
	Create the Simple Workflow Example Zones
	Define the Parameters of the Simple Workflow Example
	Define the Simple Workflow Example Decision Bindings
	Bind the Action Elements of the Simple Workflow Example
	Simple Workflow Example Action Element Bindings

	Bind the Simple Workflow Example Scripted Task Elements
	Simple Workflow Example Scriptable Task Element Bindings

	Define the Simple Workflow Example Exception Bindings
	Set the Read-Write Properties for Attributes of the Simple Workflow Example
	Set the Simple Workflow Example Parameter Properties
	Set the Layout of the Simple Workflow Example Input Parameters Dialog Box
	Validate and Run the Simple Workflow Example

	Develop a Complex Workflow
	Create the Complex Workflow Example
	Create a Custom Action for the Complex Workflow Example
	Create the Schema of the Complex Workflow Example
	Create the Complex Workflow Example Zones
	Define the Parameters of the Complex Workflow Example
	Define the Bindings for the Complex Workflow Example
	Complex Workflow Example Bindings

	Set the Complex Workflow Example Attribute Properties
	Create the Layout of the Complex Workflow Example Input Parameters
	Validate and Run the Complex Workflow Example

	Scripting
	Orchestrator Elements that Require Scripting
	Limitations of the Mozilla Rhino Implementation in Orchestrator
	Using the Orchestrator Scripting API
	Access the Scripting Engine from the Workflow Editor
	Access the Scripting Engine from the Action or Policy Editor
	Access the Orchestrator API Explorer
	Use the Orchestrator API Explorer to Find Objects
	JavaScript Objects in the API Explorer

	Writing Scripts
	Color Coding of Scripting Keywords

	Add Parameters to Scripts
	Accessing the Orchestrator Server File System from JavaScript and Workflows
	Access the Server File System Using the System.getTempDirectory Method

	Accessing Java Classes from JavaScript
	Accessing Operating System Commands from JavaScript

	Exception Handling Guidelines
	Orchestrator JavaScript Examples
	Basic Scripting Examples
	Email Scripting Examples
	File System Scripting Examples
	LDAP Scripting Examples
	Logging Scripting Examples
	Networking Scripting Examples
	Workflow Scripting Examples

	Developing Actions
	Reusing Actions
	Access the Actions View
	Components of the Actions View
	Creating Actions
	Create an Action
	Find Elements That Implement an Action
	Action Coding Guidelines
	Basic Action Guidelines
	Action Naming Guidelines
	Action Parameter Guidelines

	Use Action Version History
	Restore Deleted Actions

	Creating Resource Elements
	View a Resource Element
	Import an External Object to Use as a Resource Element
	Edit the Resource Element Information and Access Rights
	Save a Resource Element to a File
	Update a Resource Element
	Add a Resource Element to a Workflow
	Add a Resource Element to a Web View

	Creating Packages
	Create a Package
	Set User Permissions on a Package

	Creating Plug-Ins by Using Maven
	Create an Orchestrator Plug-In with Maven from an Archetype
	Maven Archetypes
	Plug-In Development Best Practices

	Index

